Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163993014> ?p ?o ?g. }
- W3163993014 abstract "Genomic Islands (GIs) are clusters of genes that are mobilized through horizontal gene transfer. GIs play a pivotal role in bacterial evolution as a mechanism of diversification and adaptation to different niches. Therefore, identification and characterization of GIs in bacterial genomes is important for understanding bacterial evolution. However, quantifying GIs is inherently difficult, and the existing methods suffer from low prediction accuracy and precision-recall trade-off. Moreover, several of them are supervised in nature, and thus, their applications to newly sequenced genomes are riddled with their dependency on the functional annotation of existing genomes.We present SSG-LUGIA, a completely automated and unsupervised approach for identifying GIs and horizontally transferred genes. SSG-LUGIA is a novel method based on unsupervised anomaly detection technique, accompanied by further refinement using cues from signal processing literature. SSG-LUGIA leverages the atypical compositional biases of the alien genes to localize GIs in prokaryotic genomes. SSG-LUGIA was assessed on a large benchmark dataset `IslandPick' and on a set of 15 well-studied genomes in the literature and followed by a thorough analysis on the well-understood Salmonella typhi CT18 genome. Furthermore, the efficacy of SSG-LUGIA in identifying horizontally transferred genes was evaluated on two additional bacterial genomes, namely, those of Corynebacterium diphtheria NCTC13129 and Pseudomonas aeruginosa LESB58. SSG-LUGIA was examined on draft genomes and was demonstrated to be efficient as an ensemble method.Our results indicate that SSG-LUGIA achieved superior performance in comparison to frequently used existing methods. Importantly, it yielded a better trade-off between precision and recall than the existing methods. Its nondependency on the functional annotation of genomes makes it suitable for analyzing newly sequenced, yet uncharacterized genomes. Thus, our study is a significant advance in identification of GIs and horizontally transferred genes. SSG-LUGIA is available as an open source software at https://nibtehaz.github.io/SSG-LUGIA/." @default.
- W3163993014 created "2021-06-07" @default.
- W3163993014 creator A5032727078 @default.
- W3163993014 creator A5034635544 @default.
- W3163993014 creator A5042126172 @default.
- W3163993014 creator A5047994728 @default.
- W3163993014 creator A5059510035 @default.
- W3163993014 creator A5085823170 @default.
- W3163993014 date "2021-05-31" @default.
- W3163993014 modified "2023-09-26" @default.
- W3163993014 title "SSG-LUGIA: Single Sequence based Genome Level Unsupervised Genomic Island Prediction Algorithm" @default.
- W3163993014 cites W1553112231 @default.
- W3163993014 cites W1599377382 @default.
- W3163993014 cites W1638410732 @default.
- W3163993014 cites W1956137100 @default.
- W3163993014 cites W1964752634 @default.
- W3163993014 cites W1966336245 @default.
- W3163993014 cites W1976526581 @default.
- W3163993014 cites W1991330646 @default.
- W3163993014 cites W1996118086 @default.
- W3163993014 cites W1998004066 @default.
- W3163993014 cites W2007492229 @default.
- W3163993014 cites W2019209738 @default.
- W3163993014 cites W2030205072 @default.
- W3163993014 cites W2034400748 @default.
- W3163993014 cites W2042573466 @default.
- W3163993014 cites W2042626827 @default.
- W3163993014 cites W2044719651 @default.
- W3163993014 cites W2048603839 @default.
- W3163993014 cites W2048620141 @default.
- W3163993014 cites W2052178620 @default.
- W3163993014 cites W2055043387 @default.
- W3163993014 cites W2055758623 @default.
- W3163993014 cites W2066051085 @default.
- W3163993014 cites W2069405597 @default.
- W3163993014 cites W2069521304 @default.
- W3163993014 cites W2074879055 @default.
- W3163993014 cites W2082860967 @default.
- W3163993014 cites W2086465016 @default.
- W3163993014 cites W2089468765 @default.
- W3163993014 cites W2095685450 @default.
- W3163993014 cites W2098558111 @default.
- W3163993014 cites W2105871221 @default.
- W3163993014 cites W2106651224 @default.
- W3163993014 cites W2108228587 @default.
- W3163993014 cites W2108473040 @default.
- W3163993014 cites W2115095549 @default.
- W3163993014 cites W2121621283 @default.
- W3163993014 cites W2121695290 @default.
- W3163993014 cites W2122804925 @default.
- W3163993014 cites W2128584436 @default.
- W3163993014 cites W2129978006 @default.
- W3163993014 cites W2131056482 @default.
- W3163993014 cites W2135146244 @default.
- W3163993014 cites W2138952930 @default.
- W3163993014 cites W2139627484 @default.
- W3163993014 cites W2139790819 @default.
- W3163993014 cites W2145608399 @default.
- W3163993014 cites W2145753399 @default.
- W3163993014 cites W2146950091 @default.
- W3163993014 cites W2151183612 @default.
- W3163993014 cites W2151863305 @default.
- W3163993014 cites W2158847524 @default.
- W3163993014 cites W2276690235 @default.
- W3163993014 cites W2294798173 @default.
- W3163993014 cites W2380785990 @default.
- W3163993014 cites W2494142335 @default.
- W3163993014 cites W2550848904 @default.
- W3163993014 cites W2610656577 @default.
- W3163993014 cites W2790921906 @default.
- W3163993014 cites W2807480080 @default.
- W3163993014 cites W2877463332 @default.
- W3163993014 cites W2966183195 @default.
- W3163993014 cites W4251516744 @default.
- W3163993014 doi "https://doi.org/10.1093/bib/bbab116" @default.
- W3163993014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34058749" @default.
- W3163993014 hasPublicationYear "2021" @default.
- W3163993014 type Work @default.
- W3163993014 sameAs 3163993014 @default.
- W3163993014 citedByCount "3" @default.
- W3163993014 countsByYear W31639930142022 @default.
- W3163993014 countsByYear W31639930142023 @default.
- W3163993014 crossrefType "journal-article" @default.
- W3163993014 hasAuthorship W3163993014A5032727078 @default.
- W3163993014 hasAuthorship W3163993014A5034635544 @default.
- W3163993014 hasAuthorship W3163993014A5042126172 @default.
- W3163993014 hasAuthorship W3163993014A5047994728 @default.
- W3163993014 hasAuthorship W3163993014A5059510035 @default.
- W3163993014 hasAuthorship W3163993014A5085823170 @default.
- W3163993014 hasConcept C104317684 @default.
- W3163993014 hasConcept C105565629 @default.
- W3163993014 hasConcept C141231307 @default.
- W3163993014 hasConcept C3742359 @default.
- W3163993014 hasConcept C41008148 @default.
- W3163993014 hasConcept C54355233 @default.
- W3163993014 hasConcept C70721500 @default.
- W3163993014 hasConcept C86803240 @default.
- W3163993014 hasConcept C92938381 @default.
- W3163993014 hasConceptScore W3163993014C104317684 @default.
- W3163993014 hasConceptScore W3163993014C105565629 @default.