Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164051601> ?p ?o ?g. }
- W3164051601 endingPage "5523" @default.
- W3164051601 startingPage "5523" @default.
- W3164051601 abstract "The lack of an efficient approach in managing pharmaceutical prices in the procurement system led to a substantial burden on government budgets. In Thailand, although the reference price policy was implemented to contain the drug expenditure, there have been some challenges with the price dispersion of medicines and pricing information transparency. This phenomenon calls for the development of a potential algorithm to estimate appropriate prices for medical products. To serve this purpose, in this paper, we first developed the model by the sequential minimal optimization (SMO) algorithm for predicting the range of the prices for each medicine, using the Waikato environment for knowledge analysis software, and applying feature selection techniques also to examine improving predictive accuracy. We used the dataset comprised of 2424 records listed on the procurement system in Thailand from January to March 2019 in the application and used a 10-fold cross-validation test to validate the model. The results demonstrated that the model derived by the SMO algorithm with the gain ratio selection method provided good performance at an accuracy of approximately 92.62%, with high sensitivity and precision. Additionally, we found that the model can distinguish the differences in the prices of medicines in the pharmaceutical market by using eight major features—the segmented buyers, the generic product groups, trade product names, procurement methods, dosage forms, pack sizes, manufacturers, and total purchase budgets—that provided the highest predictive accuracy. Our findings are useful to health policymakers who could employ our proposed model in monitoring the situation of medicine prices and providing feedback directly to suggest the best possible price for hospital purchasing managers based on the feature inputs in their procurement system." @default.
- W3164051601 created "2021-06-07" @default.
- W3164051601 creator A5012341925 @default.
- W3164051601 creator A5022428538 @default.
- W3164051601 creator A5045661677 @default.
- W3164051601 date "2021-05-21" @default.
- W3164051601 modified "2023-09-30" @default.
- W3164051601 title "How Well Does a Sequential Minimal Optimization Model Perform in Predicting Medicine Prices for Procurement System?" @default.
- W3164051601 cites W1965188285 @default.
- W3164051601 cites W1976858235 @default.
- W3164051601 cites W1979742168 @default.
- W3164051601 cites W1981820962 @default.
- W3164051601 cites W2029937526 @default.
- W3164051601 cites W2036927554 @default.
- W3164051601 cites W2055840562 @default.
- W3164051601 cites W2077083218 @default.
- W3164051601 cites W2086883366 @default.
- W3164051601 cites W2090239801 @default.
- W3164051601 cites W2112009981 @default.
- W3164051601 cites W2130213205 @default.
- W3164051601 cites W2143681976 @default.
- W3164051601 cites W2150237546 @default.
- W3164051601 cites W2151040995 @default.
- W3164051601 cites W2157894025 @default.
- W3164051601 cites W2158698691 @default.
- W3164051601 cites W2170505850 @default.
- W3164051601 cites W2316024202 @default.
- W3164051601 cites W2433065461 @default.
- W3164051601 cites W2559588458 @default.
- W3164051601 cites W2580666507 @default.
- W3164051601 cites W2603530161 @default.
- W3164051601 cites W2607163485 @default.
- W3164051601 cites W2615890952 @default.
- W3164051601 cites W2771640894 @default.
- W3164051601 cites W2884518941 @default.
- W3164051601 cites W2894049913 @default.
- W3164051601 cites W2918408501 @default.
- W3164051601 cites W2936573766 @default.
- W3164051601 cites W2940900577 @default.
- W3164051601 cites W2987804852 @default.
- W3164051601 cites W3011937804 @default.
- W3164051601 cites W3033148545 @default.
- W3164051601 cites W3041936671 @default.
- W3164051601 cites W3047323379 @default.
- W3164051601 cites W3048630898 @default.
- W3164051601 cites W3112756915 @default.
- W3164051601 cites W4297070225 @default.
- W3164051601 doi "https://doi.org/10.3390/ijerph18115523" @default.
- W3164051601 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8196718" @default.
- W3164051601 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34063965" @default.
- W3164051601 hasPublicationYear "2021" @default.
- W3164051601 type Work @default.
- W3164051601 sameAs 3164051601 @default.
- W3164051601 citedByCount "4" @default.
- W3164051601 countsByYear W31640516012022 @default.
- W3164051601 countsByYear W31640516012023 @default.
- W3164051601 crossrefType "journal-article" @default.
- W3164051601 hasAuthorship W3164051601A5012341925 @default.
- W3164051601 hasAuthorship W3164051601A5022428538 @default.
- W3164051601 hasAuthorship W3164051601A5045661677 @default.
- W3164051601 hasBestOaLocation W31640516011 @default.
- W3164051601 hasConcept C119857082 @default.
- W3164051601 hasConcept C124101348 @default.
- W3164051601 hasConcept C127413603 @default.
- W3164051601 hasConcept C144133560 @default.
- W3164051601 hasConcept C148483581 @default.
- W3164051601 hasConcept C149782125 @default.
- W3164051601 hasConcept C162324750 @default.
- W3164051601 hasConcept C162853370 @default.
- W3164051601 hasConcept C199360897 @default.
- W3164051601 hasConcept C201650216 @default.
- W3164051601 hasConcept C21200559 @default.
- W3164051601 hasConcept C24326235 @default.
- W3164051601 hasConcept C2524010 @default.
- W3164051601 hasConcept C2777904410 @default.
- W3164051601 hasConcept C2779253866 @default.
- W3164051601 hasConcept C2780233690 @default.
- W3164051601 hasConcept C33923547 @default.
- W3164051601 hasConcept C38652104 @default.
- W3164051601 hasConcept C41008148 @default.
- W3164051601 hasConcept C42475967 @default.
- W3164051601 hasConcept C90673727 @default.
- W3164051601 hasConceptScore W3164051601C119857082 @default.
- W3164051601 hasConceptScore W3164051601C124101348 @default.
- W3164051601 hasConceptScore W3164051601C127413603 @default.
- W3164051601 hasConceptScore W3164051601C144133560 @default.
- W3164051601 hasConceptScore W3164051601C148483581 @default.
- W3164051601 hasConceptScore W3164051601C149782125 @default.
- W3164051601 hasConceptScore W3164051601C162324750 @default.
- W3164051601 hasConceptScore W3164051601C162853370 @default.
- W3164051601 hasConceptScore W3164051601C199360897 @default.
- W3164051601 hasConceptScore W3164051601C201650216 @default.
- W3164051601 hasConceptScore W3164051601C21200559 @default.
- W3164051601 hasConceptScore W3164051601C24326235 @default.
- W3164051601 hasConceptScore W3164051601C2524010 @default.
- W3164051601 hasConceptScore W3164051601C2777904410 @default.
- W3164051601 hasConceptScore W3164051601C2779253866 @default.
- W3164051601 hasConceptScore W3164051601C2780233690 @default.