Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164126241> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3164126241 endingPage "4782" @default.
- W3164126241 startingPage "4782" @default.
- W3164126241 abstract "In recent years, many types of research have continued to improve the environment of human speech and emotion recognition. As facial emotion recognition has gradually matured through speech recognition, the result of this study provided more accurate recognition of complex human emotional performance, and speech emotion identification will be derived from human subjective interpretation into the use of computers to automatically interpret the speaker’s emotional expression. Focused on use in medical care, which can be used to understand the current feelings of physicians and patients during a visit, and improve the medical treatment through the relationship between illness and interaction. By transforming the voice data into a single observation segment per second, the first to the thirteenth dimensions of the frequency cestrum coefficients are used as speech emotion recognition eigenvalue vectors. Vectors for the eigenvalue vectors are maximum, minimum, average, median, and standard deviation, and there are 65 eigenvalues in total for the construction of an artificial neural network. The sentiment recognition system developed by the hospital is used as a comparison between the sentiment recognition results of the artificial neural network classification, and then use the foregoing results for a comprehensive analysis to understand the interaction between the doctor and the patient. Using this experimental module, the emotion recognition rate is 93.34%, and the accuracy rate of facial emotion recognition results can be 86.3%." @default.
- W3164126241 created "2021-06-07" @default.
- W3164126241 creator A5023310897 @default.
- W3164126241 creator A5049547692 @default.
- W3164126241 creator A5069581727 @default.
- W3164126241 creator A5013458980 @default.
- W3164126241 date "2021-05-23" @default.
- W3164126241 modified "2023-09-26" @default.
- W3164126241 title "Make Patient Consultation Warmer: A Clinical Application for Speech Emotion Recognition" @default.
- W3164126241 cites W1988111866 @default.
- W3164126241 cites W2032254851 @default.
- W3164126241 cites W2061068689 @default.
- W3164126241 cites W2061324253 @default.
- W3164126241 cites W2061900096 @default.
- W3164126241 cites W2144723972 @default.
- W3164126241 cites W2148154194 @default.
- W3164126241 cites W2180587936 @default.
- W3164126241 cites W2803098682 @default.
- W3164126241 cites W2946775412 @default.
- W3164126241 cites W2962840148 @default.
- W3164126241 cites W2985478815 @default.
- W3164126241 cites W3128636987 @default.
- W3164126241 doi "https://doi.org/10.3390/app11114782" @default.
- W3164126241 hasPublicationYear "2021" @default.
- W3164126241 type Work @default.
- W3164126241 sameAs 3164126241 @default.
- W3164126241 citedByCount "3" @default.
- W3164126241 countsByYear W31641262412022 @default.
- W3164126241 countsByYear W31641262412023 @default.
- W3164126241 crossrefType "journal-article" @default.
- W3164126241 hasAuthorship W3164126241A5013458980 @default.
- W3164126241 hasAuthorship W3164126241A5023310897 @default.
- W3164126241 hasAuthorship W3164126241A5049547692 @default.
- W3164126241 hasAuthorship W3164126241A5069581727 @default.
- W3164126241 hasBestOaLocation W31641262411 @default.
- W3164126241 hasConcept C122980154 @default.
- W3164126241 hasConcept C153180895 @default.
- W3164126241 hasConcept C154945302 @default.
- W3164126241 hasConcept C15744967 @default.
- W3164126241 hasConcept C195704467 @default.
- W3164126241 hasConcept C2777438025 @default.
- W3164126241 hasConcept C28490314 @default.
- W3164126241 hasConcept C41008148 @default.
- W3164126241 hasConcept C50644808 @default.
- W3164126241 hasConcept C77805123 @default.
- W3164126241 hasConceptScore W3164126241C122980154 @default.
- W3164126241 hasConceptScore W3164126241C153180895 @default.
- W3164126241 hasConceptScore W3164126241C154945302 @default.
- W3164126241 hasConceptScore W3164126241C15744967 @default.
- W3164126241 hasConceptScore W3164126241C195704467 @default.
- W3164126241 hasConceptScore W3164126241C2777438025 @default.
- W3164126241 hasConceptScore W3164126241C28490314 @default.
- W3164126241 hasConceptScore W3164126241C41008148 @default.
- W3164126241 hasConceptScore W3164126241C50644808 @default.
- W3164126241 hasConceptScore W3164126241C77805123 @default.
- W3164126241 hasIssue "11" @default.
- W3164126241 hasLocation W31641262411 @default.
- W3164126241 hasOpenAccess W3164126241 @default.
- W3164126241 hasPrimaryLocation W31641262411 @default.
- W3164126241 hasRelatedWork W1537282076 @default.
- W3164126241 hasRelatedWork W2016461833 @default.
- W3164126241 hasRelatedWork W2024390512 @default.
- W3164126241 hasRelatedWork W2035372623 @default.
- W3164126241 hasRelatedWork W2067892149 @default.
- W3164126241 hasRelatedWork W2140205990 @default.
- W3164126241 hasRelatedWork W2312116756 @default.
- W3164126241 hasRelatedWork W2761544674 @default.
- W3164126241 hasRelatedWork W3194078543 @default.
- W3164126241 hasRelatedWork W4296713148 @default.
- W3164126241 hasVolume "11" @default.
- W3164126241 isParatext "false" @default.
- W3164126241 isRetracted "false" @default.
- W3164126241 magId "3164126241" @default.
- W3164126241 workType "article" @default.