Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164149671> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3164149671 endingPage "012018" @default.
- W3164149671 startingPage "012018" @default.
- W3164149671 abstract "Machine learning (ML) offers a lot of potential for applications in Industry 4.0. By applying ML many processes can be improved. Possible benefits in production are a higher accuracy, an early detection of failures, a better resource efficiency or improvements in quantity control. The use of ML in industrial production systems is currently not widespread. There are several reasons for this, among others the different expertise of data scientists and automation engineers. There are no specific tools to apply ML to industrial facilities neither guidelines for setting up, tuning and validating ML implementations. In this paper we present a taxonomy structure and according method which assist the design of ML architectures and the tuning of involved parameters. As this is a very huge and complex field, we concentrate on a ML algorithm for time series forecast, as this can be used in many industrial applications. There are multiple possibilities to approach this problem ranging from basic feed-forward neural networks to recurrent networks and (temporal) convolutional networks. These different approaches will be discussed and basic guidelines regarding the model selection will be presented. The introduced assistance method will be validated on a industrial dataset." @default.
- W3164149671 created "2021-06-07" @default.
- W3164149671 creator A5022444174 @default.
- W3164149671 creator A5058789994 @default.
- W3164149671 creator A5065074078 @default.
- W3164149671 creator A5085389944 @default.
- W3164149671 date "2021-05-01" @default.
- W3164149671 modified "2023-09-30" @default.
- W3164149671 title "Assistance Method for the Application-Driven Design of Machine Learning Algorithms" @default.
- W3164149671 cites W2064675550 @default.
- W3164149671 cites W2131774270 @default.
- W3164149671 cites W2160815625 @default.
- W3164149671 cites W2257979135 @default.
- W3164149671 cites W2598525681 @default.
- W3164149671 cites W2944959599 @default.
- W3164149671 cites W2966153025 @default.
- W3164149671 doi "https://doi.org/10.1088/1757-899x/1140/1/012018" @default.
- W3164149671 hasPublicationYear "2021" @default.
- W3164149671 type Work @default.
- W3164149671 sameAs 3164149671 @default.
- W3164149671 citedByCount "0" @default.
- W3164149671 crossrefType "journal-article" @default.
- W3164149671 hasAuthorship W3164149671A5022444174 @default.
- W3164149671 hasAuthorship W3164149671A5058789994 @default.
- W3164149671 hasAuthorship W3164149671A5065074078 @default.
- W3164149671 hasAuthorship W3164149671A5085389944 @default.
- W3164149671 hasBestOaLocation W31641496711 @default.
- W3164149671 hasConcept C115901376 @default.
- W3164149671 hasConcept C115903868 @default.
- W3164149671 hasConcept C119857082 @default.
- W3164149671 hasConcept C127413603 @default.
- W3164149671 hasConcept C13736549 @default.
- W3164149671 hasConcept C139719470 @default.
- W3164149671 hasConcept C154945302 @default.
- W3164149671 hasConcept C162324750 @default.
- W3164149671 hasConcept C165556158 @default.
- W3164149671 hasConcept C202444582 @default.
- W3164149671 hasConcept C26713055 @default.
- W3164149671 hasConcept C2778348673 @default.
- W3164149671 hasConcept C33923547 @default.
- W3164149671 hasConcept C41008148 @default.
- W3164149671 hasConcept C78519656 @default.
- W3164149671 hasConcept C82753439 @default.
- W3164149671 hasConcept C9652623 @default.
- W3164149671 hasConceptScore W3164149671C115901376 @default.
- W3164149671 hasConceptScore W3164149671C115903868 @default.
- W3164149671 hasConceptScore W3164149671C119857082 @default.
- W3164149671 hasConceptScore W3164149671C127413603 @default.
- W3164149671 hasConceptScore W3164149671C13736549 @default.
- W3164149671 hasConceptScore W3164149671C139719470 @default.
- W3164149671 hasConceptScore W3164149671C154945302 @default.
- W3164149671 hasConceptScore W3164149671C162324750 @default.
- W3164149671 hasConceptScore W3164149671C165556158 @default.
- W3164149671 hasConceptScore W3164149671C202444582 @default.
- W3164149671 hasConceptScore W3164149671C26713055 @default.
- W3164149671 hasConceptScore W3164149671C2778348673 @default.
- W3164149671 hasConceptScore W3164149671C33923547 @default.
- W3164149671 hasConceptScore W3164149671C41008148 @default.
- W3164149671 hasConceptScore W3164149671C78519656 @default.
- W3164149671 hasConceptScore W3164149671C82753439 @default.
- W3164149671 hasConceptScore W3164149671C9652623 @default.
- W3164149671 hasIssue "1" @default.
- W3164149671 hasLocation W31641496711 @default.
- W3164149671 hasOpenAccess W3164149671 @default.
- W3164149671 hasPrimaryLocation W31641496711 @default.
- W3164149671 hasRelatedWork W1530188040 @default.
- W3164149671 hasRelatedWork W2128472507 @default.
- W3164149671 hasRelatedWork W2330477269 @default.
- W3164149671 hasRelatedWork W2665666956 @default.
- W3164149671 hasRelatedWork W2801577959 @default.
- W3164149671 hasRelatedWork W2889304937 @default.
- W3164149671 hasRelatedWork W2906914120 @default.
- W3164149671 hasRelatedWork W4288754364 @default.
- W3164149671 hasRelatedWork W4308734192 @default.
- W3164149671 hasRelatedWork W4312831135 @default.
- W3164149671 hasVolume "1140" @default.
- W3164149671 isParatext "false" @default.
- W3164149671 isRetracted "false" @default.
- W3164149671 magId "3164149671" @default.
- W3164149671 workType "article" @default.