Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164161738> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3164161738 endingPage "4896" @default.
- W3164161738 startingPage "4896" @default.
- W3164161738 abstract "The prediction of underwater acoustic transmission loss in the sea plays a key role in generating situational awareness in complex naval battles and assisting underwater operations. However, the traditional classical underwater acoustic transmission loss models do not consider the regional hydrological elements, and the performance of underwater acoustic transmission loss prediction under complex environmental conditions in a wide range of sea areas is limited. In order to solve this problem, we propose a deep learning-based underwater acoustic transmission loss prediction method. First, we studied the application domains of typical underwater acoustic transmission loss models (ray model, normal model, fast field program model, parabolic equation model), analyzed the constraint rules of its characteristic parameters, and constructed a dataset according to the rules. Then, according to the characteristics of the dataset, we built a DBN (deep belief net) neural network model and used DBN to train and learn the dataset. Through the DBN method, the adaptation and calculation of the underwater acoustic transmission loss model under different regional hydrological elements were carried out in a simulation environment. Finally, the new method was verified with the measured transmission loss data of acoustic sea trials in a certain sea area. The results show that the RMSE error between the underwater acoustic transmission loss calculated by the new method and the measured data was less than 6.5 dB, the accuracy was higher than that of the traditional method, and the prediction speed was faster, the result was more accurate, and had a wide range of adaptability in complex seas." @default.
- W3164161738 created "2021-06-07" @default.
- W3164161738 creator A5001617110 @default.
- W3164161738 creator A5020518942 @default.
- W3164161738 creator A5063790555 @default.
- W3164161738 creator A5079323599 @default.
- W3164161738 creator A5079764553 @default.
- W3164161738 date "2021-05-26" @default.
- W3164161738 modified "2023-10-12" @default.
- W3164161738 title "Prediction Method of Underwater Acoustic Transmission Loss Based on Deep Belief Net Neural Network" @default.
- W3164161738 cites W1967879920 @default.
- W3164161738 cites W2100495367 @default.
- W3164161738 cites W2160815625 @default.
- W3164161738 cites W2195459533 @default.
- W3164161738 cites W2258884143 @default.
- W3164161738 cites W4231109964 @default.
- W3164161738 doi "https://doi.org/10.3390/app11114896" @default.
- W3164161738 hasPublicationYear "2021" @default.
- W3164161738 type Work @default.
- W3164161738 sameAs 3164161738 @default.
- W3164161738 citedByCount "2" @default.
- W3164161738 countsByYear W31641617382022 @default.
- W3164161738 crossrefType "journal-article" @default.
- W3164161738 hasAuthorship W3164161738A5001617110 @default.
- W3164161738 hasAuthorship W3164161738A5020518942 @default.
- W3164161738 hasAuthorship W3164161738A5063790555 @default.
- W3164161738 hasAuthorship W3164161738A5079323599 @default.
- W3164161738 hasAuthorship W3164161738A5079764553 @default.
- W3164161738 hasBestOaLocation W31641617381 @default.
- W3164161738 hasConcept C111368507 @default.
- W3164161738 hasConcept C121332964 @default.
- W3164161738 hasConcept C127313418 @default.
- W3164161738 hasConcept C127413603 @default.
- W3164161738 hasConcept C146978453 @default.
- W3164161738 hasConcept C154945302 @default.
- W3164161738 hasConcept C169111936 @default.
- W3164161738 hasConcept C204323151 @default.
- W3164161738 hasConcept C24890656 @default.
- W3164161738 hasConcept C2779753020 @default.
- W3164161738 hasConcept C41008148 @default.
- W3164161738 hasConcept C50644808 @default.
- W3164161738 hasConcept C761482 @default.
- W3164161738 hasConcept C76155785 @default.
- W3164161738 hasConcept C97385483 @default.
- W3164161738 hasConcept C98083399 @default.
- W3164161738 hasConceptScore W3164161738C111368507 @default.
- W3164161738 hasConceptScore W3164161738C121332964 @default.
- W3164161738 hasConceptScore W3164161738C127313418 @default.
- W3164161738 hasConceptScore W3164161738C127413603 @default.
- W3164161738 hasConceptScore W3164161738C146978453 @default.
- W3164161738 hasConceptScore W3164161738C154945302 @default.
- W3164161738 hasConceptScore W3164161738C169111936 @default.
- W3164161738 hasConceptScore W3164161738C204323151 @default.
- W3164161738 hasConceptScore W3164161738C24890656 @default.
- W3164161738 hasConceptScore W3164161738C2779753020 @default.
- W3164161738 hasConceptScore W3164161738C41008148 @default.
- W3164161738 hasConceptScore W3164161738C50644808 @default.
- W3164161738 hasConceptScore W3164161738C761482 @default.
- W3164161738 hasConceptScore W3164161738C76155785 @default.
- W3164161738 hasConceptScore W3164161738C97385483 @default.
- W3164161738 hasConceptScore W3164161738C98083399 @default.
- W3164161738 hasIssue "11" @default.
- W3164161738 hasLocation W31641617381 @default.
- W3164161738 hasOpenAccess W3164161738 @default.
- W3164161738 hasPrimaryLocation W31641617381 @default.
- W3164161738 hasRelatedWork W1989468614 @default.
- W3164161738 hasRelatedWork W2185568765 @default.
- W3164161738 hasRelatedWork W2353494610 @default.
- W3164161738 hasRelatedWork W2477841276 @default.
- W3164161738 hasRelatedWork W2556643280 @default.
- W3164161738 hasRelatedWork W3081304190 @default.
- W3164161738 hasRelatedWork W3214188517 @default.
- W3164161738 hasRelatedWork W4225540233 @default.
- W3164161738 hasRelatedWork W4285703999 @default.
- W3164161738 hasRelatedWork W46613192 @default.
- W3164161738 hasVolume "11" @default.
- W3164161738 isParatext "false" @default.
- W3164161738 isRetracted "false" @default.
- W3164161738 magId "3164161738" @default.
- W3164161738 workType "article" @default.