Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164173661> ?p ?o ?g. }
- W3164173661 endingPage "11106" @default.
- W3164173661 startingPage "11093" @default.
- W3164173661 abstract "Traditional target detection methods assume that the background spectrum is subject to the Gaussian distribution, which may only perform well under certain conditions. In addition, traditional target detection methods suffer from the problem of the unbalanced number of target and background samples. To solve these problems, this study presents a novel target detection method based on asymmetric weighted logistic metric learning (AWLML). We first construct a logistic metric-learning approach as an objective function with a positive semidefinite constraint to learn the metric matrix from a set of labeled samples. Then, an asymmetric weighted strategy is provided to emphasize the unbalance between the number of target and background samples. Finally, an accelerated proximal gradient method is applied to identify the global minimum value. Extensive experiments on three challenging hyperspectral datasets demonstrate that the proposed AWLML algorithm improves the state-of-the-art target detection performance." @default.
- W3164173661 created "2021-06-07" @default.
- W3164173661 creator A5022270828 @default.
- W3164173661 creator A5036283525 @default.
- W3164173661 creator A5060042752 @default.
- W3164173661 creator A5064293510 @default.
- W3164173661 creator A5084097095 @default.
- W3164173661 date "2022-10-01" @default.
- W3164173661 modified "2023-10-09" @default.
- W3164173661 title "Asymmetric Weighted Logistic Metric Learning for Hyperspectral Target Detection" @default.
- W3164173661 cites W1426280032 @default.
- W3164173661 cites W1949591461 @default.
- W3164173661 cites W1972578813 @default.
- W3164173661 cites W1975685499 @default.
- W3164173661 cites W2000692343 @default.
- W3164173661 cites W2001619934 @default.
- W3164173661 cites W2010928391 @default.
- W3164173661 cites W2013438974 @default.
- W3164173661 cites W2017014096 @default.
- W3164173661 cites W2040812261 @default.
- W3164173661 cites W2047870694 @default.
- W3164173661 cites W2059497048 @default.
- W3164173661 cites W2067782748 @default.
- W3164173661 cites W2075660001 @default.
- W3164173661 cites W2089074647 @default.
- W3164173661 cites W2096972831 @default.
- W3164173661 cites W2097381359 @default.
- W3164173661 cites W2100556411 @default.
- W3164173661 cites W2109824782 @default.
- W3164173661 cites W2117741752 @default.
- W3164173661 cites W2121101670 @default.
- W3164173661 cites W2137945622 @default.
- W3164173661 cites W2140340527 @default.
- W3164173661 cites W2146954653 @default.
- W3164173661 cites W2164160978 @default.
- W3164173661 cites W2169495281 @default.
- W3164173661 cites W2220271458 @default.
- W3164173661 cites W2343117455 @default.
- W3164173661 cites W2518815253 @default.
- W3164173661 cites W2538037923 @default.
- W3164173661 cites W2550571249 @default.
- W3164173661 cites W2560082588 @default.
- W3164173661 cites W2565499339 @default.
- W3164173661 cites W2574404198 @default.
- W3164173661 cites W2765358207 @default.
- W3164173661 cites W2766623491 @default.
- W3164173661 cites W2889341738 @default.
- W3164173661 cites W2889977864 @default.
- W3164173661 cites W2891755487 @default.
- W3164173661 cites W2936266191 @default.
- W3164173661 cites W2962898849 @default.
- W3164173661 cites W2962931900 @default.
- W3164173661 cites W3003326148 @default.
- W3164173661 cites W4299823361 @default.
- W3164173661 cites W625476304 @default.
- W3164173661 doi "https://doi.org/10.1109/tcyb.2021.3070909" @default.
- W3164173661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34043517" @default.
- W3164173661 hasPublicationYear "2022" @default.
- W3164173661 type Work @default.
- W3164173661 sameAs 3164173661 @default.
- W3164173661 citedByCount "19" @default.
- W3164173661 countsByYear W31641736612021 @default.
- W3164173661 countsByYear W31641736612022 @default.
- W3164173661 countsByYear W31641736612023 @default.
- W3164173661 crossrefType "journal-article" @default.
- W3164173661 hasAuthorship W3164173661A5022270828 @default.
- W3164173661 hasAuthorship W3164173661A5036283525 @default.
- W3164173661 hasAuthorship W3164173661A5060042752 @default.
- W3164173661 hasAuthorship W3164173661A5064293510 @default.
- W3164173661 hasAuthorship W3164173661A5084097095 @default.
- W3164173661 hasConcept C11413529 @default.
- W3164173661 hasConcept C119857082 @default.
- W3164173661 hasConcept C121332964 @default.
- W3164173661 hasConcept C126255220 @default.
- W3164173661 hasConcept C153180895 @default.
- W3164173661 hasConcept C154945302 @default.
- W3164173661 hasConcept C159078339 @default.
- W3164173661 hasConcept C162324750 @default.
- W3164173661 hasConcept C163716315 @default.
- W3164173661 hasConcept C176217482 @default.
- W3164173661 hasConcept C177264268 @default.
- W3164173661 hasConcept C199360897 @default.
- W3164173661 hasConcept C21547014 @default.
- W3164173661 hasConcept C2524010 @default.
- W3164173661 hasConcept C2776036281 @default.
- W3164173661 hasConcept C33923547 @default.
- W3164173661 hasConcept C41008148 @default.
- W3164173661 hasConcept C62520636 @default.
- W3164173661 hasConceptScore W3164173661C11413529 @default.
- W3164173661 hasConceptScore W3164173661C119857082 @default.
- W3164173661 hasConceptScore W3164173661C121332964 @default.
- W3164173661 hasConceptScore W3164173661C126255220 @default.
- W3164173661 hasConceptScore W3164173661C153180895 @default.
- W3164173661 hasConceptScore W3164173661C154945302 @default.
- W3164173661 hasConceptScore W3164173661C159078339 @default.
- W3164173661 hasConceptScore W3164173661C162324750 @default.
- W3164173661 hasConceptScore W3164173661C163716315 @default.
- W3164173661 hasConceptScore W3164173661C176217482 @default.