Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164199608> ?p ?o ?g. }
- W3164199608 endingPage "115235" @default.
- W3164199608 startingPage "115235" @default.
- W3164199608 abstract "Kidney transplantation (KT) is an optimal treatment for end-stage renal disease (ESRD). Currently, short-term KT outcomes are indeed excellent, but long-term successful outcomes are still difficult to achieve, and improving them is crucial for kidney recipients. An early and accurate prediction of long-term graft survival helps healthcare practitioners to create a more personalized treatment plans for patients and facilitates the performance of clinical trials. In this study, we propose a machine learning framework to early predict graft survival after five years of KT and determine the most influential parameters that affect the survival. Our dataset was collected from Charles Nicolle Hospital in Tunis in Tunisia and it included pre, peri, post KT aspects. We utilized four machine learning algorithms to select the most important features: the least absolute shrinkage and selection operator logistic regression (Lasso-LR), Random Forrest (RF), Decision Tree (DT), and Chi-square (Chi-sq). We utilized three Scikit-learn functions to implement those algorithms: SelectFromModel (SFM), Recursive Feature Elimination (RFE), and SelectKBest (SKB). Five algorithms were utilized to builds prediction models based on the data groups resulted from the feature selection step: logistic regression (LR), k-nearest neighbors (KNN), extreme gradient boosting (XGB), and artificial neural network (ANN). We evaluated the models using five performance measures: accuracy, sensitivity, specificity, F1 measure, and area under the curve (AUC). XGBoost resulted the best model with the highest AUC (89.7%). It was based ten features selected by RF algorithm and SFM function. The accuracy, sensitivity, specificity, and F1 of the best model were 91.5%, 91.9%, 87.5%, and 89.6%, respectively. This study proposes a novel approach for investigating long-term allograft survival while considering the complex relationship between all KT aspects and long-term outcomes. Our framework can be used as a decision support system for Nephrologists to early detect graft status, which helps in developing safer recommendations for kidney patients and consequently obtaining positive KT outcomes and mitigating the risks of graft failure." @default.
- W3164199608 created "2021-06-07" @default.
- W3164199608 creator A5007479725 @default.
- W3164199608 creator A5027998173 @default.
- W3164199608 creator A5030705773 @default.
- W3164199608 creator A5032386078 @default.
- W3164199608 creator A5070594019 @default.
- W3164199608 date "2021-11-01" @default.
- W3164199608 modified "2023-10-06" @default.
- W3164199608 title "A machine learning framework for predicting long-term graft survival after kidney transplantation" @default.
- W3164199608 cites W1164040328 @default.
- W3164199608 cites W1923079464 @default.
- W3164199608 cites W1969627037 @default.
- W3164199608 cites W1976857190 @default.
- W3164199608 cites W1977849485 @default.
- W3164199608 cites W1979155203 @default.
- W3164199608 cites W1984292712 @default.
- W3164199608 cites W1990319624 @default.
- W3164199608 cites W2002523926 @default.
- W3164199608 cites W2006824409 @default.
- W3164199608 cites W2011605997 @default.
- W3164199608 cites W2027422911 @default.
- W3164199608 cites W2038148357 @default.
- W3164199608 cites W2039924078 @default.
- W3164199608 cites W2040584032 @default.
- W3164199608 cites W2048313832 @default.
- W3164199608 cites W2072147752 @default.
- W3164199608 cites W2072849516 @default.
- W3164199608 cites W2081475785 @default.
- W3164199608 cites W2081807710 @default.
- W3164199608 cites W2095795470 @default.
- W3164199608 cites W2105218035 @default.
- W3164199608 cites W2113820196 @default.
- W3164199608 cites W2116892880 @default.
- W3164199608 cites W2118969778 @default.
- W3164199608 cites W2125199942 @default.
- W3164199608 cites W2127181154 @default.
- W3164199608 cites W2138687178 @default.
- W3164199608 cites W2140978037 @default.
- W3164199608 cites W2144929407 @default.
- W3164199608 cites W2145249725 @default.
- W3164199608 cites W2147622609 @default.
- W3164199608 cites W2148143831 @default.
- W3164199608 cites W2154369070 @default.
- W3164199608 cites W2158016855 @default.
- W3164199608 cites W2165351765 @default.
- W3164199608 cites W2167970551 @default.
- W3164199608 cites W2170210143 @default.
- W3164199608 cites W2170264508 @default.
- W3164199608 cites W2194719539 @default.
- W3164199608 cites W2223549901 @default.
- W3164199608 cites W2532969992 @default.
- W3164199608 cites W2536537752 @default.
- W3164199608 cites W2538536375 @default.
- W3164199608 cites W2586821431 @default.
- W3164199608 cites W2590379360 @default.
- W3164199608 cites W2606819954 @default.
- W3164199608 cites W2727650337 @default.
- W3164199608 cites W2747116615 @default.
- W3164199608 cites W2758719723 @default.
- W3164199608 cites W2771885314 @default.
- W3164199608 cites W2884498786 @default.
- W3164199608 cites W2886793380 @default.
- W3164199608 cites W2900329012 @default.
- W3164199608 cites W2912143311 @default.
- W3164199608 cites W2962760069 @default.
- W3164199608 cites W2964727200 @default.
- W3164199608 cites W2969528126 @default.
- W3164199608 cites W2969720828 @default.
- W3164199608 cites W2977757007 @default.
- W3164199608 cites W2989341121 @default.
- W3164199608 cites W3004788954 @default.
- W3164199608 cites W3007937214 @default.
- W3164199608 cites W3020022355 @default.
- W3164199608 cites W3043299403 @default.
- W3164199608 cites W4232050702 @default.
- W3164199608 doi "https://doi.org/10.1016/j.eswa.2021.115235" @default.
- W3164199608 hasPublicationYear "2021" @default.
- W3164199608 type Work @default.
- W3164199608 sameAs 3164199608 @default.
- W3164199608 citedByCount "7" @default.
- W3164199608 countsByYear W31641996082021 @default.
- W3164199608 countsByYear W31641996082022 @default.
- W3164199608 countsByYear W31641996082023 @default.
- W3164199608 crossrefType "journal-article" @default.
- W3164199608 hasAuthorship W3164199608A5007479725 @default.
- W3164199608 hasAuthorship W3164199608A5027998173 @default.
- W3164199608 hasAuthorship W3164199608A5030705773 @default.
- W3164199608 hasAuthorship W3164199608A5032386078 @default.
- W3164199608 hasAuthorship W3164199608A5070594019 @default.
- W3164199608 hasConcept C105795698 @default.
- W3164199608 hasConcept C119857082 @default.
- W3164199608 hasConcept C136764020 @default.
- W3164199608 hasConcept C148483581 @default.
- W3164199608 hasConcept C151956035 @default.
- W3164199608 hasConcept C154945302 @default.
- W3164199608 hasConcept C169258074 @default.
- W3164199608 hasConcept C33923547 @default.