Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164241323> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3164241323 abstract "Abstract Utilizing a neural network, individual down-axis images of combustion waves in the rotating detonation engine (RDE) can be classified according to the number of detonation waves present and their directional behavior. While the ability to identify the number of waves present within individual images might be intuitive, the further classification of wave rotational direction is a result of the detonation wave’s profile, which suggests its angular direction of movement. The application of deep learning is highly adaptive and, therefore, can be trained for a variety of image collection methods across RDE study platforms. In this study, a supervised approach is employed where a series of manually classified images is provided to a neural network for the purpose of optimizing the classification performance of the network. These images, referred to as the training set, are individually labeled as one of ten modes present in an experimental RDE. Possible classifications include deflagration, clockwise and counterclockwise variants of co-rotational detonation waves with quantities ranging from one to three waves, as well as single, double, and triple counter-rotating detonation waves. After training the network, a second set of manually classified images, referred to as the validation set, is used to evaluate the performance of the model. The ability to predict the detonation wave mode in a single image using a trained neural network substantially reduces computational complexity by circumnavigating the need to evaluate the temporal behavior of individual pixel regions throughout time. Results suggest that while image quality is critical, it is possible to accurately identify the modal behavior of detonation waves based on only a single image rather than a sequence of images or signal processing. Successful identification of wave behavior using image classification serves as a steppingstone for further machine learning integration in RDE research and development of comprehensive real-time diagnostics." @default.
- W3164241323 created "2021-06-07" @default.
- W3164241323 creator A5014356996 @default.
- W3164241323 creator A5042531608 @default.
- W3164241323 creator A5065550003 @default.
- W3164241323 creator A5073164792 @default.
- W3164241323 date "2021-04-19" @default.
- W3164241323 modified "2023-10-13" @default.
- W3164241323 title "Application of a Convolutional Neural Network for Wave Mode Identification in a Rotating Detonation Combustor Using High-Speed Imaging" @default.
- W3164241323 cites W2045521686 @default.
- W3164241323 cites W2112796928 @default.
- W3164241323 cites W2117539524 @default.
- W3164241323 cites W2141392910 @default.
- W3164241323 cites W2248763203 @default.
- W3164241323 cites W2316035505 @default.
- W3164241323 cites W2334138624 @default.
- W3164241323 cites W2569386378 @default.
- W3164241323 cites W2595601158 @default.
- W3164241323 cites W2596354933 @default.
- W3164241323 cites W2618530766 @default.
- W3164241323 cites W2622826443 @default.
- W3164241323 cites W2734669076 @default.
- W3164241323 cites W2736498808 @default.
- W3164241323 cites W2805049759 @default.
- W3164241323 cites W2846818174 @default.
- W3164241323 cites W2864693587 @default.
- W3164241323 cites W2882025888 @default.
- W3164241323 cites W2885883620 @default.
- W3164241323 cites W2893035601 @default.
- W3164241323 cites W2899220575 @default.
- W3164241323 cites W2911021014 @default.
- W3164241323 cites W2949910144 @default.
- W3164241323 cites W2967535620 @default.
- W3164241323 cites W2973126222 @default.
- W3164241323 cites W2978149441 @default.
- W3164241323 cites W2996906421 @default.
- W3164241323 doi "https://doi.org/10.1115/1.4049868" @default.
- W3164241323 hasPublicationYear "2021" @default.
- W3164241323 type Work @default.
- W3164241323 sameAs 3164241323 @default.
- W3164241323 citedByCount "5" @default.
- W3164241323 countsByYear W31642413232022 @default.
- W3164241323 countsByYear W31642413232023 @default.
- W3164241323 crossrefType "journal-article" @default.
- W3164241323 hasAuthorship W3164241323A5014356996 @default.
- W3164241323 hasAuthorship W3164241323A5042531608 @default.
- W3164241323 hasAuthorship W3164241323A5065550003 @default.
- W3164241323 hasAuthorship W3164241323A5073164792 @default.
- W3164241323 hasBestOaLocation W31642413231 @default.
- W3164241323 hasConcept C153180895 @default.
- W3164241323 hasConcept C154238967 @default.
- W3164241323 hasConcept C154945302 @default.
- W3164241323 hasConcept C177264268 @default.
- W3164241323 hasConcept C178790620 @default.
- W3164241323 hasConcept C185592680 @default.
- W3164241323 hasConcept C199360897 @default.
- W3164241323 hasConcept C203397868 @default.
- W3164241323 hasConcept C41008148 @default.
- W3164241323 hasConcept C47396930 @default.
- W3164241323 hasConcept C50644808 @default.
- W3164241323 hasConcept C81363708 @default.
- W3164241323 hasConceptScore W3164241323C153180895 @default.
- W3164241323 hasConceptScore W3164241323C154238967 @default.
- W3164241323 hasConceptScore W3164241323C154945302 @default.
- W3164241323 hasConceptScore W3164241323C177264268 @default.
- W3164241323 hasConceptScore W3164241323C178790620 @default.
- W3164241323 hasConceptScore W3164241323C185592680 @default.
- W3164241323 hasConceptScore W3164241323C199360897 @default.
- W3164241323 hasConceptScore W3164241323C203397868 @default.
- W3164241323 hasConceptScore W3164241323C41008148 @default.
- W3164241323 hasConceptScore W3164241323C47396930 @default.
- W3164241323 hasConceptScore W3164241323C50644808 @default.
- W3164241323 hasConceptScore W3164241323C81363708 @default.
- W3164241323 hasFunder F4320333450 @default.
- W3164241323 hasIssue "6" @default.
- W3164241323 hasLocation W31642413231 @default.
- W3164241323 hasOpenAccess W3164241323 @default.
- W3164241323 hasPrimaryLocation W31642413231 @default.
- W3164241323 hasRelatedWork W2175746458 @default.
- W3164241323 hasRelatedWork W2732542196 @default.
- W3164241323 hasRelatedWork W2738221750 @default.
- W3164241323 hasRelatedWork W2758063741 @default.
- W3164241323 hasRelatedWork W2760085659 @default.
- W3164241323 hasRelatedWork W2912288872 @default.
- W3164241323 hasRelatedWork W3012978760 @default.
- W3164241323 hasRelatedWork W3081496756 @default.
- W3164241323 hasRelatedWork W3093612317 @default.
- W3164241323 hasRelatedWork W4304820710 @default.
- W3164241323 hasVolume "13" @default.
- W3164241323 isParatext "false" @default.
- W3164241323 isRetracted "false" @default.
- W3164241323 magId "3164241323" @default.
- W3164241323 workType "article" @default.