Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164275378> ?p ?o ?g. }
- W3164275378 endingPage "1748" @default.
- W3164275378 startingPage "1748" @default.
- W3164275378 abstract "Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded by various issues, including illumination variation throughout the crop growing season, the effect of which on the retrieval performance is not well understood at present. In this study, four retrieval methods are compared, in terms of retrieving the leaf area index (LAI), fractional vegetation cover (fCover), and canopy chlorophyll content (CCC) of potato plants over an agricultural field for six dates during the growing season. We analyzed: (1) The standard look-up table method (LUTstd), (2) an improved (regularized) LUT method that involves variable correlation (LUTreg), (3) hybrid methods, and (4) random forest regression without (RF) and with (RFexp) the exposure time as an additional explanatory variable. The Soil-Leaf-Canopy (SLC) model was used in association with the LUT-based inversion and hybrid methods, while the statistical modelling methods (RF and RFexp) relied entirely on in situ data. The results revealed that RFexp was the best-performing method, yielding the highest accuracies, in terms of the normalized root mean square error (NRMSE), for LAI (5.36%), fCover (5.87%), and CCC (15.01%). RFexp was able to reduce the effects of illumination variability and cloud shadows. LUTreg outperformed the other two retrieval methods (hybrid methods and LUTstd), with an NRMSE of 9.18% for LAI, 10.46% for fCover, and 12.16% for CCC. Conversely, LUTreg led to lower accuracies than those derived from RF for LAI (5.51%) and for fCover (6.23%), but not for CCC (16.21%). Therefore, the machine learning approaches-in particular, RF-appear to be the most promising retrieval methods for application to UAV-based hyperspectral data." @default.
- W3164275378 created "2021-06-07" @default.
- W3164275378 creator A5015952574 @default.
- W3164275378 creator A5034523839 @default.
- W3164275378 creator A5036850875 @default.
- W3164275378 creator A5056154832 @default.
- W3164275378 creator A5079121857 @default.
- W3164275378 creator A5079448372 @default.
- W3164275378 date "2021-04-30" @default.
- W3164275378 modified "2023-10-14" @default.
- W3164275378 title "Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR Hyperspectral Imaging" @default.
- W3164275378 cites W1608631099 @default.
- W3164275378 cites W1940059766 @default.
- W3164275378 cites W1966123034 @default.
- W3164275378 cites W1970664916 @default.
- W3164275378 cites W1974286236 @default.
- W3164275378 cites W1978283906 @default.
- W3164275378 cites W1988872612 @default.
- W3164275378 cites W1991276594 @default.
- W3164275378 cites W1999051604 @default.
- W3164275378 cites W2016910327 @default.
- W3164275378 cites W2017859040 @default.
- W3164275378 cites W2018044188 @default.
- W3164275378 cites W2018494703 @default.
- W3164275378 cites W2024585152 @default.
- W3164275378 cites W2027331474 @default.
- W3164275378 cites W2030078894 @default.
- W3164275378 cites W2033943160 @default.
- W3164275378 cites W2037117298 @default.
- W3164275378 cites W2037639866 @default.
- W3164275378 cites W2043673805 @default.
- W3164275378 cites W2044076861 @default.
- W3164275378 cites W2066612219 @default.
- W3164275378 cites W2073100112 @default.
- W3164275378 cites W2076532457 @default.
- W3164275378 cites W2078222544 @default.
- W3164275378 cites W2095823889 @default.
- W3164275378 cites W2097970470 @default.
- W3164275378 cites W2101695001 @default.
- W3164275378 cites W2106628858 @default.
- W3164275378 cites W2111443246 @default.
- W3164275378 cites W2115436074 @default.
- W3164275378 cites W2115539456 @default.
- W3164275378 cites W2125230412 @default.
- W3164275378 cites W2145539952 @default.
- W3164275378 cites W2152366160 @default.
- W3164275378 cites W2154964583 @default.
- W3164275378 cites W2166312616 @default.
- W3164275378 cites W2298473705 @default.
- W3164275378 cites W2340480861 @default.
- W3164275378 cites W2404939661 @default.
- W3164275378 cites W2481822942 @default.
- W3164275378 cites W248389711 @default.
- W3164275378 cites W2517171266 @default.
- W3164275378 cites W2524214095 @default.
- W3164275378 cites W2586616160 @default.
- W3164275378 cites W2591466624 @default.
- W3164275378 cites W2604795894 @default.
- W3164275378 cites W2611988762 @default.
- W3164275378 cites W2612981598 @default.
- W3164275378 cites W2621361177 @default.
- W3164275378 cites W2626521779 @default.
- W3164275378 cites W2734660147 @default.
- W3164275378 cites W2761475824 @default.
- W3164275378 cites W2770928509 @default.
- W3164275378 cites W2771841295 @default.
- W3164275378 cites W2806394060 @default.
- W3164275378 cites W2837916766 @default.
- W3164275378 cites W2884438462 @default.
- W3164275378 cites W2896259593 @default.
- W3164275378 cites W2897795069 @default.
- W3164275378 cites W2903662845 @default.
- W3164275378 cites W2904957358 @default.
- W3164275378 cites W2911964244 @default.
- W3164275378 cites W2913229076 @default.
- W3164275378 cites W2915540904 @default.
- W3164275378 cites W2950061264 @default.
- W3164275378 cites W2950381058 @default.
- W3164275378 cites W2954633720 @default.
- W3164275378 cites W2959046283 @default.
- W3164275378 cites W2961290969 @default.
- W3164275378 cites W2964087232 @default.
- W3164275378 cites W2964415981 @default.
- W3164275378 cites W2969371053 @default.
- W3164275378 cites W2969754063 @default.
- W3164275378 cites W2981792938 @default.
- W3164275378 cites W2985010831 @default.
- W3164275378 cites W2993884728 @default.
- W3164275378 cites W2998577031 @default.
- W3164275378 cites W3002639097 @default.
- W3164275378 cites W3008109610 @default.
- W3164275378 cites W3015135619 @default.
- W3164275378 cites W3019517659 @default.
- W3164275378 cites W3020125143 @default.
- W3164275378 cites W3043213732 @default.
- W3164275378 cites W3090525814 @default.
- W3164275378 cites W3093069797 @default.
- W3164275378 cites W3095923272 @default.