Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164282918> ?p ?o ?g. }
- W3164282918 endingPage "3246" @default.
- W3164282918 startingPage "3234" @default.
- W3164282918 abstract "Vehicle and pedestrian detection is one of the critical tasks in autonomous driving. Since heterogeneous techniques have been proposed, the selection of a detection system with an appropriate balance among detection accuracy, speed and memory consumption for a specific task has become very challenging. To deal with this issue and to provide guidance for model selection, this paper analyzes several mainstream object detection architectures, including Faster R-CNN, R-FCN, and SSD, along with several typical feature extractors, such as ResNet50, ResNet101, MobileNet_V1, MobileNet_V2, Inception_V2 and Inception_ResNet_V2. By conducting extensive experiments using the KITTI benchmark, which is a commonly used street dataset, we demonstrate that Faster R-CNN ResNet50 obtains the best average precision (AP) (58%) for vehicle and pedestrian detection, with a speed of 8.6 FPS. Faster R-CNN Inception_V2 performs best for detecting cars and detecting pedestrians respectively (74.5% and 47.3%). ResNet101 consumes the highest memory (9907 MB) and has the largest number of parameters (64.42 millions), and Inception_ResNet_V2 is the slowest model (3.05 FPS). SSD MobileNet_V2 is the fastest model (70 FPS), and SSD MobileNet_V1 is the lightest model in terms of memory usage (875 MB), both of which are suitable for applications on mobile and embedded devices." @default.
- W3164282918 created "2021-06-07" @default.
- W3164282918 creator A5012324763 @default.
- W3164282918 creator A5022287632 @default.
- W3164282918 creator A5031991761 @default.
- W3164282918 creator A5054177285 @default.
- W3164282918 creator A5072031132 @default.
- W3164282918 creator A5077262336 @default.
- W3164282918 creator A5081796777 @default.
- W3164282918 creator A5083438052 @default.
- W3164282918 date "2021-06-01" @default.
- W3164282918 modified "2023-10-06" @default.
- W3164282918 title "Deep Neural Network Based Vehicle and Pedestrian Detection for Autonomous Driving: A Survey" @default.
- W3164282918 cites W1536680647 @default.
- W3164282918 cites W1677182931 @default.
- W3164282918 cites W1849277567 @default.
- W3164282918 cites W1861492603 @default.
- W3164282918 cites W1903029394 @default.
- W3164282918 cites W1910706092 @default.
- W3164282918 cites W1994488211 @default.
- W3164282918 cites W2011891945 @default.
- W3164282918 cites W2031489346 @default.
- W3164282918 cites W2045798786 @default.
- W3164282918 cites W2057175746 @default.
- W3164282918 cites W2070724998 @default.
- W3164282918 cites W2088049833 @default.
- W3164282918 cites W2097117768 @default.
- W3164282918 cites W2098693229 @default.
- W3164282918 cites W2102605133 @default.
- W3164282918 cites W2108598243 @default.
- W3164282918 cites W2109255472 @default.
- W3164282918 cites W2117539524 @default.
- W3164282918 cites W2123977795 @default.
- W3164282918 cites W2124087378 @default.
- W3164282918 cites W2124351082 @default.
- W3164282918 cites W2124386111 @default.
- W3164282918 cites W2133324800 @default.
- W3164282918 cites W2149077040 @default.
- W3164282918 cites W2151103935 @default.
- W3164282918 cites W2161381512 @default.
- W3164282918 cites W2161969291 @default.
- W3164282918 cites W2162915993 @default.
- W3164282918 cites W2163352848 @default.
- W3164282918 cites W2163922914 @default.
- W3164282918 cites W2164598857 @default.
- W3164282918 cites W2179352600 @default.
- W3164282918 cites W2183182206 @default.
- W3164282918 cites W2183341477 @default.
- W3164282918 cites W2194775991 @default.
- W3164282918 cites W2295107390 @default.
- W3164282918 cites W2418346537 @default.
- W3164282918 cites W2557728737 @default.
- W3164282918 cites W2604724028 @default.
- W3164282918 cites W2604970008 @default.
- W3164282918 cites W2791697444 @default.
- W3164282918 cites W2895922401 @default.
- W3164282918 cites W2911486422 @default.
- W3164282918 cites W2914885528 @default.
- W3164282918 cites W2919115771 @default.
- W3164282918 cites W2937800894 @default.
- W3164282918 cites W2943963440 @default.
- W3164282918 cites W2963037989 @default.
- W3164282918 cites W2963163009 @default.
- W3164282918 cites W2963318220 @default.
- W3164282918 cites W2963446712 @default.
- W3164282918 cites W2963690996 @default.
- W3164282918 cites W2967654291 @default.
- W3164282918 cites W2972006294 @default.
- W3164282918 cites W2982379822 @default.
- W3164282918 cites W2990831234 @default.
- W3164282918 doi "https://doi.org/10.1109/tits.2020.2993926" @default.
- W3164282918 hasPublicationYear "2021" @default.
- W3164282918 type Work @default.
- W3164282918 sameAs 3164282918 @default.
- W3164282918 citedByCount "68" @default.
- W3164282918 countsByYear W31642829182022 @default.
- W3164282918 countsByYear W31642829182023 @default.
- W3164282918 crossrefType "journal-article" @default.
- W3164282918 hasAuthorship W3164282918A5012324763 @default.
- W3164282918 hasAuthorship W3164282918A5022287632 @default.
- W3164282918 hasAuthorship W3164282918A5031991761 @default.
- W3164282918 hasAuthorship W3164282918A5054177285 @default.
- W3164282918 hasAuthorship W3164282918A5072031132 @default.
- W3164282918 hasAuthorship W3164282918A5077262336 @default.
- W3164282918 hasAuthorship W3164282918A5081796777 @default.
- W3164282918 hasAuthorship W3164282918A5083438052 @default.
- W3164282918 hasConcept C127413603 @default.
- W3164282918 hasConcept C13280743 @default.
- W3164282918 hasConcept C138885662 @default.
- W3164282918 hasConcept C148483581 @default.
- W3164282918 hasConcept C153180895 @default.
- W3164282918 hasConcept C154945302 @default.
- W3164282918 hasConcept C185798385 @default.
- W3164282918 hasConcept C201995342 @default.
- W3164282918 hasConcept C205649164 @default.
- W3164282918 hasConcept C22212356 @default.
- W3164282918 hasConcept C2776151529 @default.
- W3164282918 hasConcept C2776401178 @default.