Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164287616> ?p ?o ?g. }
- W3164287616 endingPage "168131" @default.
- W3164287616 startingPage "168131" @default.
- W3164287616 abstract "Artificial Intelligence (AI) has been gaining traction recently. However, they are executed on devices with the von Neumann architecture, requiring high power input. Consequently, brain-inspired neuromorphic computing (NC) has been gaining attention because it is expected to be more power efficient and more suitable for AI. Designing of NC circuits involves development of artificial neurons and synapses. More studies have hitherto been focused on artificial synapses instead of neurons because the latter should demonstrate leaky integrate-and-fire (LIF) properties, which is a challenge to replicate artificially. In this work, we propose a domain wall (DW) based device made from perpendicularly magnetized (Co/Ni)n nanowire (NW) with graded magnetic anisotropy and saturation magnetization. The DW is current-driven via spin-transfer-torque. Micromagnetic simulations demonstrated that the DWs in NWs with anisotropy field gradients can automatically return towards the initial position when electrical current is absent, indicative of the leakage process. The underlying physics of DW motion in such structure was studied in detail. To replicate the crystallinity of (Co/Ni)n structures, granular NWs were also defined. Depending on the grain structure of the NW, it was found that LIF properties were achieved under the conditions of steep anisotropy field gradients. Therefore, the proposed design has potential applications in neuron devices." @default.
- W3164287616 created "2021-06-07" @default.
- W3164287616 creator A5015738501 @default.
- W3164287616 creator A5019393830 @default.
- W3164287616 creator A5053968725 @default.
- W3164287616 creator A5090880595 @default.
- W3164287616 date "2021-11-01" @default.
- W3164287616 modified "2023-10-18" @default.
- W3164287616 title "Domain wall dynamics in (Co/Ni)n nanowire with anisotropy energy gradient for neuromorphic computing applications" @default.
- W3164287616 cites W1505810407 @default.
- W3164287616 cites W1537888364 @default.
- W3164287616 cites W2012201754 @default.
- W3164287616 cites W2023699194 @default.
- W3164287616 cites W2041490648 @default.
- W3164287616 cites W2044330180 @default.
- W3164287616 cites W2058128345 @default.
- W3164287616 cites W2066680974 @default.
- W3164287616 cites W2076095541 @default.
- W3164287616 cites W2131257481 @default.
- W3164287616 cites W2137687977 @default.
- W3164287616 cites W2138276780 @default.
- W3164287616 cites W2139490204 @default.
- W3164287616 cites W2141991880 @default.
- W3164287616 cites W2142805504 @default.
- W3164287616 cites W2148003211 @default.
- W3164287616 cites W2254676946 @default.
- W3164287616 cites W2336860599 @default.
- W3164287616 cites W2337225993 @default.
- W3164287616 cites W2350695330 @default.
- W3164287616 cites W2465139175 @default.
- W3164287616 cites W2510733095 @default.
- W3164287616 cites W2512481274 @default.
- W3164287616 cites W2530522579 @default.
- W3164287616 cites W2563540017 @default.
- W3164287616 cites W2563901758 @default.
- W3164287616 cites W2584998015 @default.
- W3164287616 cites W2591849898 @default.
- W3164287616 cites W2727398406 @default.
- W3164287616 cites W2756570000 @default.
- W3164287616 cites W2765284936 @default.
- W3164287616 cites W2766769117 @default.
- W3164287616 cites W2768145587 @default.
- W3164287616 cites W2769049661 @default.
- W3164287616 cites W2783687327 @default.
- W3164287616 cites W2790669755 @default.
- W3164287616 cites W2791069301 @default.
- W3164287616 cites W2792334128 @default.
- W3164287616 cites W2806243471 @default.
- W3164287616 cites W2888279026 @default.
- W3164287616 cites W2889746799 @default.
- W3164287616 cites W2891075622 @default.
- W3164287616 cites W2897224876 @default.
- W3164287616 cites W2902894850 @default.
- W3164287616 cites W2903663641 @default.
- W3164287616 cites W2920979543 @default.
- W3164287616 cites W2931552750 @default.
- W3164287616 cites W2944850769 @default.
- W3164287616 cites W2948105002 @default.
- W3164287616 cites W2949784460 @default.
- W3164287616 cites W2962927947 @default.
- W3164287616 cites W2982632705 @default.
- W3164287616 cites W2999505002 @default.
- W3164287616 cites W3013125789 @default.
- W3164287616 cites W3098479181 @default.
- W3164287616 cites W3104453112 @default.
- W3164287616 cites W4210956562 @default.
- W3164287616 cites W4247678842 @default.
- W3164287616 doi "https://doi.org/10.1016/j.jmmm.2021.168131" @default.
- W3164287616 hasPublicationYear "2021" @default.
- W3164287616 type Work @default.
- W3164287616 sameAs 3164287616 @default.
- W3164287616 citedByCount "8" @default.
- W3164287616 countsByYear W31642876162022 @default.
- W3164287616 countsByYear W31642876162023 @default.
- W3164287616 crossrefType "journal-article" @default.
- W3164287616 hasAuthorship W3164287616A5015738501 @default.
- W3164287616 hasAuthorship W3164287616A5019393830 @default.
- W3164287616 hasAuthorship W3164287616A5053968725 @default.
- W3164287616 hasAuthorship W3164287616A5090880595 @default.
- W3164287616 hasConcept C115260700 @default.
- W3164287616 hasConcept C120665830 @default.
- W3164287616 hasConcept C121332964 @default.
- W3164287616 hasConcept C151927369 @default.
- W3164287616 hasConcept C154945302 @default.
- W3164287616 hasConcept C181686392 @default.
- W3164287616 hasConcept C192562407 @default.
- W3164287616 hasConcept C26873012 @default.
- W3164287616 hasConcept C2778381111 @default.
- W3164287616 hasConcept C32546565 @default.
- W3164287616 hasConcept C41008148 @default.
- W3164287616 hasConcept C49040817 @default.
- W3164287616 hasConcept C50644808 @default.
- W3164287616 hasConcept C62520636 @default.
- W3164287616 hasConcept C74214498 @default.
- W3164287616 hasConcept C85725439 @default.
- W3164287616 hasConceptScore W3164287616C115260700 @default.
- W3164287616 hasConceptScore W3164287616C120665830 @default.
- W3164287616 hasConceptScore W3164287616C121332964 @default.