Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164294465> ?p ?o ?g. }
- W3164294465 abstract "Abstract Background Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images. Methods This retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1–18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests. Results DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on DLR images ( p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture. Conclusion Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength." @default.
- W3164294465 created "2021-06-07" @default.
- W3164294465 creator A5027292502 @default.
- W3164294465 creator A5034138684 @default.
- W3164294465 creator A5070339389 @default.
- W3164294465 creator A5081352895 @default.
- W3164294465 date "2021-10-10" @default.
- W3164294465 modified "2023-10-08" @default.
- W3164294465 title "Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction" @default.
- W3164294465 cites W1966364402 @default.
- W3164294465 cites W1988604645 @default.
- W3164294465 cites W1999325277 @default.
- W3164294465 cites W2034903235 @default.
- W3164294465 cites W2052829179 @default.
- W3164294465 cites W2127416880 @default.
- W3164294465 cites W2129241337 @default.
- W3164294465 cites W2134471668 @default.
- W3164294465 cites W2141834520 @default.
- W3164294465 cites W2159642028 @default.
- W3164294465 cites W2162987941 @default.
- W3164294465 cites W2320212003 @default.
- W3164294465 cites W2744056307 @default.
- W3164294465 cites W2746168118 @default.
- W3164294465 cites W2799851267 @default.
- W3164294465 cites W2936378778 @default.
- W3164294465 cites W2946539594 @default.
- W3164294465 cites W2971089102 @default.
- W3164294465 cites W3000953045 @default.
- W3164294465 cites W3006526713 @default.
- W3164294465 cites W3006578793 @default.
- W3164294465 cites W3007407399 @default.
- W3164294465 cites W3015948052 @default.
- W3164294465 cites W3092367716 @default.
- W3164294465 cites W3099029995 @default.
- W3164294465 cites W3111986621 @default.
- W3164294465 cites W3129055040 @default.
- W3164294465 doi "https://doi.org/10.1186/s12880-021-00677-2" @default.
- W3164294465 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8503996" @default.
- W3164294465 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34629049" @default.
- W3164294465 hasPublicationYear "2021" @default.
- W3164294465 type Work @default.
- W3164294465 sameAs 3164294465 @default.
- W3164294465 citedByCount "13" @default.
- W3164294465 countsByYear W31642944652022 @default.
- W3164294465 countsByYear W31642944652023 @default.
- W3164294465 crossrefType "journal-article" @default.
- W3164294465 hasAuthorship W3164294465A5027292502 @default.
- W3164294465 hasAuthorship W3164294465A5034138684 @default.
- W3164294465 hasAuthorship W3164294465A5070339389 @default.
- W3164294465 hasAuthorship W3164294465A5081352895 @default.
- W3164294465 hasBestOaLocation W31642944651 @default.
- W3164294465 hasConcept C104293457 @default.
- W3164294465 hasConcept C115961682 @default.
- W3164294465 hasConcept C126322002 @default.
- W3164294465 hasConcept C126838900 @default.
- W3164294465 hasConcept C12868164 @default.
- W3164294465 hasConcept C141379421 @default.
- W3164294465 hasConcept C154945302 @default.
- W3164294465 hasConcept C206041023 @default.
- W3164294465 hasConcept C2779983558 @default.
- W3164294465 hasConcept C2989005 @default.
- W3164294465 hasConcept C35772409 @default.
- W3164294465 hasConcept C41008148 @default.
- W3164294465 hasConcept C55020928 @default.
- W3164294465 hasConcept C71924100 @default.
- W3164294465 hasConcept C99498987 @default.
- W3164294465 hasConceptScore W3164294465C104293457 @default.
- W3164294465 hasConceptScore W3164294465C115961682 @default.
- W3164294465 hasConceptScore W3164294465C126322002 @default.
- W3164294465 hasConceptScore W3164294465C126838900 @default.
- W3164294465 hasConceptScore W3164294465C12868164 @default.
- W3164294465 hasConceptScore W3164294465C141379421 @default.
- W3164294465 hasConceptScore W3164294465C154945302 @default.
- W3164294465 hasConceptScore W3164294465C206041023 @default.
- W3164294465 hasConceptScore W3164294465C2779983558 @default.
- W3164294465 hasConceptScore W3164294465C2989005 @default.
- W3164294465 hasConceptScore W3164294465C35772409 @default.
- W3164294465 hasConceptScore W3164294465C41008148 @default.
- W3164294465 hasConceptScore W3164294465C55020928 @default.
- W3164294465 hasConceptScore W3164294465C71924100 @default.
- W3164294465 hasConceptScore W3164294465C99498987 @default.
- W3164294465 hasIssue "1" @default.
- W3164294465 hasLocation W31642944651 @default.
- W3164294465 hasLocation W31642944652 @default.
- W3164294465 hasLocation W31642944653 @default.
- W3164294465 hasLocation W31642944654 @default.
- W3164294465 hasLocation W31642944655 @default.
- W3164294465 hasOpenAccess W3164294465 @default.
- W3164294465 hasPrimaryLocation W31642944651 @default.
- W3164294465 hasRelatedWork W2009935520 @default.
- W3164294465 hasRelatedWork W2011797925 @default.
- W3164294465 hasRelatedWork W2058254206 @default.
- W3164294465 hasRelatedWork W2105162923 @default.
- W3164294465 hasRelatedWork W2144778520 @default.
- W3164294465 hasRelatedWork W2215132873 @default.
- W3164294465 hasRelatedWork W2291745687 @default.
- W3164294465 hasRelatedWork W2386146599 @default.
- W3164294465 hasRelatedWork W2745571083 @default.
- W3164294465 hasRelatedWork W3031503912 @default.
- W3164294465 hasVolume "21" @default.