Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164310557> ?p ?o ?g. }
- W3164310557 endingPage "55" @default.
- W3164310557 startingPage "55" @default.
- W3164310557 abstract "To predict the future behavior of a system, we can exploit the information collected in the past, trying to identify recurring structures in what happened to predict what could happen, if the same structures repeat themselves in the future as well. A time series represents a time sequence of numerical values observed in the past at a measurable variable. The values are sampled at equidistant time intervals, according to an appropriate granular frequency, such as the day, week, or month, and measured according to physical units of measurement. In machine learning-based algorithms, the information underlying the knowledge is extracted from the data themselves, which are explored and analyzed in search of recurring patterns or to discover hidden causal associations or relationships. The prediction model extracts knowledge through an inductive process: the input is the data and, possibly, a first example of the expected output, the machine will then learn the algorithm to follow to obtain the same result. This paper reviews the most recent work that has used machine learning-based techniques to extract knowledge from time series data." @default.
- W3164310557 created "2021-06-07" @default.
- W3164310557 creator A5039998278 @default.
- W3164310557 creator A5088167386 @default.
- W3164310557 date "2021-05-25" @default.
- W3164310557 modified "2023-10-18" @default.
- W3164310557 title "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review" @default.
- W3164310557 cites W1507544250 @default.
- W3164310557 cites W1793927692 @default.
- W3164310557 cites W1968988752 @default.
- W3164310557 cites W1973058638 @default.
- W3164310557 cites W1974608936 @default.
- W3164310557 cites W1980645251 @default.
- W3164310557 cites W1982348007 @default.
- W3164310557 cites W1989692403 @default.
- W3164310557 cites W1995359253 @default.
- W3164310557 cites W1995864121 @default.
- W3164310557 cites W1997336782 @default.
- W3164310557 cites W2000571459 @default.
- W3164310557 cites W2011430131 @default.
- W3164310557 cites W2018810989 @default.
- W3164310557 cites W2023302299 @default.
- W3164310557 cites W2032269423 @default.
- W3164310557 cites W2036280280 @default.
- W3164310557 cites W2036681246 @default.
- W3164310557 cites W2038532793 @default.
- W3164310557 cites W2042412037 @default.
- W3164310557 cites W2043803919 @default.
- W3164310557 cites W2044447441 @default.
- W3164310557 cites W2048665112 @default.
- W3164310557 cites W2049289224 @default.
- W3164310557 cites W2057160778 @default.
- W3164310557 cites W2060742450 @default.
- W3164310557 cites W2064675550 @default.
- W3164310557 cites W2067084426 @default.
- W3164310557 cites W2073900057 @default.
- W3164310557 cites W2080690725 @default.
- W3164310557 cites W2081681829 @default.
- W3164310557 cites W2092624117 @default.
- W3164310557 cites W2092800390 @default.
- W3164310557 cites W2110242546 @default.
- W3164310557 cites W2110371102 @default.
- W3164310557 cites W2110485445 @default.
- W3164310557 cites W2110802877 @default.
- W3164310557 cites W2117014758 @default.
- W3164310557 cites W2117691915 @default.
- W3164310557 cites W2121844625 @default.
- W3164310557 cites W2123513648 @default.
- W3164310557 cites W2126831543 @default.
- W3164310557 cites W2128084896 @default.
- W3164310557 cites W2130158080 @default.
- W3164310557 cites W2135505249 @default.
- W3164310557 cites W2149224850 @default.
- W3164310557 cites W2154326182 @default.
- W3164310557 cites W2157628315 @default.
- W3164310557 cites W2280154071 @default.
- W3164310557 cites W2295256067 @default.
- W3164310557 cites W2343999517 @default.
- W3164310557 cites W2598525681 @default.
- W3164310557 cites W2600842288 @default.
- W3164310557 cites W2604269166 @default.
- W3164310557 cites W2604926040 @default.
- W3164310557 cites W2622816133 @default.
- W3164310557 cites W2624385633 @default.
- W3164310557 cites W2734777338 @default.
- W3164310557 cites W2763079654 @default.
- W3164310557 cites W2791525675 @default.
- W3164310557 cites W2796601240 @default.
- W3164310557 cites W2800569739 @default.
- W3164310557 cites W2802314367 @default.
- W3164310557 cites W2807737462 @default.
- W3164310557 cites W2809562624 @default.
- W3164310557 cites W2886020048 @default.
- W3164310557 cites W2888477829 @default.
- W3164310557 cites W2896784509 @default.
- W3164310557 cites W2896827527 @default.
- W3164310557 cites W2897738539 @default.
- W3164310557 cites W2900793336 @default.
- W3164310557 cites W2901312569 @default.
- W3164310557 cites W2906824711 @default.
- W3164310557 cites W2910183581 @default.
- W3164310557 cites W2913797286 @default.
- W3164310557 cites W2940864740 @default.
- W3164310557 cites W2943473775 @default.
- W3164310557 cites W2950597342 @default.
- W3164310557 cites W2955034228 @default.
- W3164310557 cites W2955168996 @default.
- W3164310557 cites W2963921977 @default.
- W3164310557 cites W2964006806 @default.
- W3164310557 cites W2964010366 @default.
- W3164310557 cites W2966153025 @default.
- W3164310557 cites W2978698066 @default.
- W3164310557 cites W2982207148 @default.
- W3164310557 cites W2984376566 @default.
- W3164310557 cites W2988244882 @default.
- W3164310557 cites W3012417407 @default.
- W3164310557 cites W3021497205 @default.
- W3164310557 cites W3027109963 @default.