Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164332983> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3164332983 abstract "Abstract Background and Objective To develop a computational algorithm that detects and identifies different artefact types in neonatal electroencephalography (EEG) signals. Methods As part of a larger algorithm, we trained a Residual Deep Neural Network on expert human annotations of EEG recordings from 79 term infants recorded in a neonatal intensive care unit (112 h of 18-channel recording). The network was trained using 10 fold cross validation in Matlab. Artefact types included: device interference, EMG, movement, electrode pop, and non-cortical biological rhythms. Performance was assessed by prediction statistics and further validated on a separate independent dataset of 13 term infants (143 h of 3-channel recording). EEG pre-processing steps, and other post-processing steps such as averaging probability over a temporal window, were also included in the algorithm. Results The Residual Deep Neural Network showed high accuracy (95%) when distinguishing periods of clean, artefact-free EEG from any kind of artefact, with a median accuracy for individual patient of 91% (IQR: 81%-96%). The accuracy in identifying the five different types of artefacts ranged from 57%-92%, with electrode pop being the hardest to detect and EMG being the easiest. This reflected the proportion of artefact available in the training dataset. Misclassification as clean was low for each artefact type, ranging from 1%-11%. The detection accuracy was lower on the validation set (87%). We used the algorithm to show that EEG channels located near the vertex were the least susceptible to artefact. Conclusion Artefacts can be accurately and reliably identified in the neonatal EEG using a deep learning algorithm. Artefact detection algorithms can provide continuous bedside quality assessment and support EEG review by clinicians or analysis algorithms. Highlights We applied a Residual Deep Neural Network as part of an artefact detection algorithm in neonatal electroencephalograms. The algorithm shows high accuracy in identifying artefactual data in general and for specific artefact types. EEG channels near the top of the head are less prone to artefact." @default.
- W3164332983 created "2021-06-07" @default.
- W3164332983 creator A5010111370 @default.
- W3164332983 creator A5032026142 @default.
- W3164332983 creator A5035250049 @default.
- W3164332983 creator A5075852342 @default.
- W3164332983 creator A5082531068 @default.
- W3164332983 date "2021-05-24" @default.
- W3164332983 modified "2023-10-16" @default.
- W3164332983 title "Automated detection of artefacts in neonatal EEG with residual neural networks" @default.
- W3164332983 cites W1502232137 @default.
- W3164332983 cites W1671438656 @default.
- W3164332983 cites W1705562686 @default.
- W3164332983 cites W1974059195 @default.
- W3164332983 cites W1979151689 @default.
- W3164332983 cites W1989996189 @default.
- W3164332983 cites W2023869733 @default.
- W3164332983 cites W2045358591 @default.
- W3164332983 cites W2070197433 @default.
- W3164332983 cites W2102307636 @default.
- W3164332983 cites W2107858022 @default.
- W3164332983 cites W2118044775 @default.
- W3164332983 cites W2132575173 @default.
- W3164332983 cites W2145745502 @default.
- W3164332983 cites W2165608081 @default.
- W3164332983 cites W2194775991 @default.
- W3164332983 cites W2323214063 @default.
- W3164332983 cites W2595353633 @default.
- W3164332983 cites W2626799778 @default.
- W3164332983 cites W2761594644 @default.
- W3164332983 cites W2795693435 @default.
- W3164332983 cites W2808568541 @default.
- W3164332983 cites W2810030448 @default.
- W3164332983 cites W2889326414 @default.
- W3164332983 cites W2918225995 @default.
- W3164332983 cites W2921677196 @default.
- W3164332983 cites W2942144085 @default.
- W3164332983 cites W2990430870 @default.
- W3164332983 cites W3020888272 @default.
- W3164332983 cites W3047736274 @default.
- W3164332983 doi "https://doi.org/10.1101/2021.05.23.445349" @default.
- W3164332983 hasPublicationYear "2021" @default.
- W3164332983 type Work @default.
- W3164332983 sameAs 3164332983 @default.
- W3164332983 citedByCount "0" @default.
- W3164332983 crossrefType "posted-content" @default.
- W3164332983 hasAuthorship W3164332983A5010111370 @default.
- W3164332983 hasAuthorship W3164332983A5032026142 @default.
- W3164332983 hasAuthorship W3164332983A5035250049 @default.
- W3164332983 hasAuthorship W3164332983A5075852342 @default.
- W3164332983 hasAuthorship W3164332983A5082531068 @default.
- W3164332983 hasBestOaLocation W31643329831 @default.
- W3164332983 hasConcept C11413529 @default.
- W3164332983 hasConcept C118552586 @default.
- W3164332983 hasConcept C153180895 @default.
- W3164332983 hasConcept C154945302 @default.
- W3164332983 hasConcept C155512373 @default.
- W3164332983 hasConcept C15744967 @default.
- W3164332983 hasConcept C28490314 @default.
- W3164332983 hasConcept C41008148 @default.
- W3164332983 hasConcept C50644808 @default.
- W3164332983 hasConcept C522805319 @default.
- W3164332983 hasConceptScore W3164332983C11413529 @default.
- W3164332983 hasConceptScore W3164332983C118552586 @default.
- W3164332983 hasConceptScore W3164332983C153180895 @default.
- W3164332983 hasConceptScore W3164332983C154945302 @default.
- W3164332983 hasConceptScore W3164332983C155512373 @default.
- W3164332983 hasConceptScore W3164332983C15744967 @default.
- W3164332983 hasConceptScore W3164332983C28490314 @default.
- W3164332983 hasConceptScore W3164332983C41008148 @default.
- W3164332983 hasConceptScore W3164332983C50644808 @default.
- W3164332983 hasConceptScore W3164332983C522805319 @default.
- W3164332983 hasLocation W31643329831 @default.
- W3164332983 hasLocation W31643329832 @default.
- W3164332983 hasOpenAccess W3164332983 @default.
- W3164332983 hasPrimaryLocation W31643329831 @default.
- W3164332983 hasRelatedWork W2033914206 @default.
- W3164332983 hasRelatedWork W2146076056 @default.
- W3164332983 hasRelatedWork W2386387936 @default.
- W3164332983 hasRelatedWork W2593428261 @default.
- W3164332983 hasRelatedWork W2809253131 @default.
- W3164332983 hasRelatedWork W2973451922 @default.
- W3164332983 hasRelatedWork W3094412894 @default.
- W3164332983 hasRelatedWork W3107474891 @default.
- W3164332983 hasRelatedWork W4301184459 @default.
- W3164332983 hasRelatedWork W4313203779 @default.
- W3164332983 isParatext "false" @default.
- W3164332983 isRetracted "false" @default.
- W3164332983 magId "3164332983" @default.
- W3164332983 workType "article" @default.