Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164334414> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3164334414 endingPage "12" @default.
- W3164334414 startingPage "1" @default.
- W3164334414 abstract "Cervical cancer is among the most common types of cancer affecting women around the world despite the advances in prevention, screening, diagnosis, and treatment during the past decade. Cervical cancer can be treated if diagnosed in its early stages. Machine learning algorithms like multi-layer perceptron, decision trees, random forest, K-Nearest Neighbor, and Naive-Bayes have been used for the prediction of cervical cancer to aid in its early diagnoses. In this study, we used an ensemble learning technique in the prediction of cervical cancer using risk factors. This technique was selected because it combines several machine learning techniques into one model to decrease variance, bias, and improvement in performance. K-Nearest Neighbor, Classification and Regression Trees, Naive Bayes Classifier, and Support Vector Machine. Classification methods were selected because the interest of this study was to solve a classification problem. Therefore these algorithms could work well within our problem domain. The final prediction model was trained and validated, and our experimental results revealed that our model had an accuracy of 87.21%." @default.
- W3164334414 created "2021-06-07" @default.
- W3164334414 creator A5004183276 @default.
- W3164334414 creator A5065332583 @default.
- W3164334414 creator A5077662377 @default.
- W3164334414 creator A5078205498 @default.
- W3164334414 date "2020-05-18" @default.
- W3164334414 modified "2023-09-27" @default.
- W3164334414 title "Prediction of Cervical Cancer Basing on Risk Factors using Ensemble Learning" @default.
- W3164334414 hasPublicationYear "2020" @default.
- W3164334414 type Work @default.
- W3164334414 sameAs 3164334414 @default.
- W3164334414 citedByCount "2" @default.
- W3164334414 countsByYear W31643344142021 @default.
- W3164334414 crossrefType "book" @default.
- W3164334414 hasAuthorship W3164334414A5004183276 @default.
- W3164334414 hasAuthorship W3164334414A5065332583 @default.
- W3164334414 hasAuthorship W3164334414A5077662377 @default.
- W3164334414 hasAuthorship W3164334414A5078205498 @default.
- W3164334414 hasConcept C107673813 @default.
- W3164334414 hasConcept C110083411 @default.
- W3164334414 hasConcept C113238511 @default.
- W3164334414 hasConcept C119857082 @default.
- W3164334414 hasConcept C121608353 @default.
- W3164334414 hasConcept C12267149 @default.
- W3164334414 hasConcept C126322002 @default.
- W3164334414 hasConcept C142724271 @default.
- W3164334414 hasConcept C154945302 @default.
- W3164334414 hasConcept C169258074 @default.
- W3164334414 hasConcept C179717631 @default.
- W3164334414 hasConcept C207201462 @default.
- W3164334414 hasConcept C2778220009 @default.
- W3164334414 hasConcept C41008148 @default.
- W3164334414 hasConcept C45942800 @default.
- W3164334414 hasConcept C50644808 @default.
- W3164334414 hasConcept C52001869 @default.
- W3164334414 hasConcept C534262118 @default.
- W3164334414 hasConcept C60908668 @default.
- W3164334414 hasConcept C71924100 @default.
- W3164334414 hasConcept C84525736 @default.
- W3164334414 hasConcept C95623464 @default.
- W3164334414 hasConceptScore W3164334414C107673813 @default.
- W3164334414 hasConceptScore W3164334414C110083411 @default.
- W3164334414 hasConceptScore W3164334414C113238511 @default.
- W3164334414 hasConceptScore W3164334414C119857082 @default.
- W3164334414 hasConceptScore W3164334414C121608353 @default.
- W3164334414 hasConceptScore W3164334414C12267149 @default.
- W3164334414 hasConceptScore W3164334414C126322002 @default.
- W3164334414 hasConceptScore W3164334414C142724271 @default.
- W3164334414 hasConceptScore W3164334414C154945302 @default.
- W3164334414 hasConceptScore W3164334414C169258074 @default.
- W3164334414 hasConceptScore W3164334414C179717631 @default.
- W3164334414 hasConceptScore W3164334414C207201462 @default.
- W3164334414 hasConceptScore W3164334414C2778220009 @default.
- W3164334414 hasConceptScore W3164334414C41008148 @default.
- W3164334414 hasConceptScore W3164334414C45942800 @default.
- W3164334414 hasConceptScore W3164334414C50644808 @default.
- W3164334414 hasConceptScore W3164334414C52001869 @default.
- W3164334414 hasConceptScore W3164334414C534262118 @default.
- W3164334414 hasConceptScore W3164334414C60908668 @default.
- W3164334414 hasConceptScore W3164334414C71924100 @default.
- W3164334414 hasConceptScore W3164334414C84525736 @default.
- W3164334414 hasConceptScore W3164334414C95623464 @default.
- W3164334414 hasLocation W31643344141 @default.
- W3164334414 hasOpenAccess W3164334414 @default.
- W3164334414 hasPrimaryLocation W31643344141 @default.
- W3164334414 hasRelatedWork W1142474234 @default.
- W3164334414 hasRelatedWork W1995192311 @default.
- W3164334414 hasRelatedWork W2028219433 @default.
- W3164334414 hasRelatedWork W2047925168 @default.
- W3164334414 hasRelatedWork W2051765606 @default.
- W3164334414 hasRelatedWork W2412167292 @default.
- W3164334414 hasRelatedWork W2433481593 @default.
- W3164334414 hasRelatedWork W2791534013 @default.
- W3164334414 hasRelatedWork W2898208740 @default.
- W3164334414 hasRelatedWork W2945197865 @default.
- W3164334414 hasRelatedWork W2995675665 @default.
- W3164334414 hasRelatedWork W3022754982 @default.
- W3164334414 hasRelatedWork W3101885971 @default.
- W3164334414 hasRelatedWork W3107286258 @default.
- W3164334414 hasRelatedWork W3128393947 @default.
- W3164334414 hasRelatedWork W3158186452 @default.
- W3164334414 hasRelatedWork W3159325777 @default.
- W3164334414 hasRelatedWork W3162922322 @default.
- W3164334414 hasRelatedWork W3204512408 @default.
- W3164334414 hasRelatedWork W3211566025 @default.
- W3164334414 isParatext "false" @default.
- W3164334414 isRetracted "false" @default.
- W3164334414 magId "3164334414" @default.
- W3164334414 workType "book" @default.