Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164394845> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3164394845 endingPage "2159035" @default.
- W3164394845 startingPage "2159035" @default.
- W3164394845 abstract "Under the actual combat background, prior information on radar targets has great uncertainty. The waveform designed based on prior information does not meet the requirements for the estimation of parameter. Thus, an algorithm for designing a waveform based on reinforcement learning is proposed to solve the above-mentioned problem. The problem on radar target parameter estimation is modeled as a framework for multi-agent reinforcement learning. Each frequency band acts as an agent, collectively interacts with the environment, independently receives observation results, shares rewards, and constantly updates the Q-network. The results of the simulation experiments indicate that the algorithm exhibits a significant improvement in terms of the mutual information obtained using the water injection method. In the case of simulation experiment, the SINR of the waveform designed based on multi-agent reinforcement learning is more than 3[Formula: see text]dB higher than that of LFM waveform. Under the condition of different time width and power, the mutual information obtained by the algorithm is better than that of water injection method. Moreover, such algorithm is also found to effectively improve the parameter estimation performance of target detection." @default.
- W3164394845 created "2021-06-07" @default.
- W3164394845 creator A5008141914 @default.
- W3164394845 creator A5017343408 @default.
- W3164394845 creator A5027802291 @default.
- W3164394845 creator A5084854649 @default.
- W3164394845 creator A5088268888 @default.
- W3164394845 date "2021-05-21" @default.
- W3164394845 modified "2023-09-30" @default.
- W3164394845 title "Radar Waveform Design Based on Multi-Agent Reinforcement Learning" @default.
- W3164394845 cites W1900456707 @default.
- W3164394845 cites W1966934949 @default.
- W3164394845 cites W206679605 @default.
- W3164394845 cites W2104600812 @default.
- W3164394845 cites W2137632745 @default.
- W3164394845 cites W2138356751 @default.
- W3164394845 cites W2143556900 @default.
- W3164394845 cites W2161445862 @default.
- W3164394845 cites W2170366951 @default.
- W3164394845 cites W2809541537 @default.
- W3164394845 cites W2889157317 @default.
- W3164394845 cites W2963117122 @default.
- W3164394845 cites W2963207437 @default.
- W3164394845 cites W2981038142 @default.
- W3164394845 cites W3082056562 @default.
- W3164394845 doi "https://doi.org/10.1142/s0218001421590357" @default.
- W3164394845 hasPublicationYear "2021" @default.
- W3164394845 type Work @default.
- W3164394845 sameAs 3164394845 @default.
- W3164394845 citedByCount "2" @default.
- W3164394845 countsByYear W31643948452023 @default.
- W3164394845 crossrefType "journal-article" @default.
- W3164394845 hasAuthorship W3164394845A5008141914 @default.
- W3164394845 hasAuthorship W3164394845A5017343408 @default.
- W3164394845 hasAuthorship W3164394845A5027802291 @default.
- W3164394845 hasAuthorship W3164394845A5084854649 @default.
- W3164394845 hasAuthorship W3164394845A5088268888 @default.
- W3164394845 hasConcept C11413529 @default.
- W3164394845 hasConcept C119857082 @default.
- W3164394845 hasConcept C121332964 @default.
- W3164394845 hasConcept C127413603 @default.
- W3164394845 hasConcept C152139883 @default.
- W3164394845 hasConcept C154945302 @default.
- W3164394845 hasConcept C163258240 @default.
- W3164394845 hasConcept C197424946 @default.
- W3164394845 hasConcept C41008148 @default.
- W3164394845 hasConcept C554190296 @default.
- W3164394845 hasConcept C62520636 @default.
- W3164394845 hasConcept C66938386 @default.
- W3164394845 hasConcept C67203356 @default.
- W3164394845 hasConcept C76155785 @default.
- W3164394845 hasConcept C97541855 @default.
- W3164394845 hasConceptScore W3164394845C11413529 @default.
- W3164394845 hasConceptScore W3164394845C119857082 @default.
- W3164394845 hasConceptScore W3164394845C121332964 @default.
- W3164394845 hasConceptScore W3164394845C127413603 @default.
- W3164394845 hasConceptScore W3164394845C152139883 @default.
- W3164394845 hasConceptScore W3164394845C154945302 @default.
- W3164394845 hasConceptScore W3164394845C163258240 @default.
- W3164394845 hasConceptScore W3164394845C197424946 @default.
- W3164394845 hasConceptScore W3164394845C41008148 @default.
- W3164394845 hasConceptScore W3164394845C554190296 @default.
- W3164394845 hasConceptScore W3164394845C62520636 @default.
- W3164394845 hasConceptScore W3164394845C66938386 @default.
- W3164394845 hasConceptScore W3164394845C67203356 @default.
- W3164394845 hasConceptScore W3164394845C76155785 @default.
- W3164394845 hasConceptScore W3164394845C97541855 @default.
- W3164394845 hasIssue "10" @default.
- W3164394845 hasLocation W31643948451 @default.
- W3164394845 hasOpenAccess W3164394845 @default.
- W3164394845 hasPrimaryLocation W31643948451 @default.
- W3164394845 hasRelatedWork W1562959674 @default.
- W3164394845 hasRelatedWork W1978989259 @default.
- W3164394845 hasRelatedWork W2889052227 @default.
- W3164394845 hasRelatedWork W2923653485 @default.
- W3164394845 hasRelatedWork W3022038857 @default.
- W3164394845 hasRelatedWork W3080082755 @default.
- W3164394845 hasRelatedWork W3164394845 @default.
- W3164394845 hasRelatedWork W4221050174 @default.
- W3164394845 hasRelatedWork W4225307033 @default.
- W3164394845 hasRelatedWork W4319083788 @default.
- W3164394845 hasVolume "35" @default.
- W3164394845 isParatext "false" @default.
- W3164394845 isRetracted "false" @default.
- W3164394845 magId "3164394845" @default.
- W3164394845 workType "article" @default.