Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164436700> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3164436700 endingPage "1871" @default.
- W3164436700 startingPage "1862" @default.
- W3164436700 abstract "Password guessing attack is the most direct way to break information systems. Using appropriate methods to generate password dictionaries can accurately evaluate the security of password sets. This paper proposes a new approach to the Chinese password set security evaluation that is named Chinese Syllables and Neural Network-based password generation (CSNN). In CSNN, each chinese syllable is treated as an integral element, and the spelling rules of chinese syllable can be used to parse and process the passwords. The processed passwords are then trained in the neural network model of Long Short-Term Memory (LSTM), which is used to generate password dictionaries (guessing sets). To evaluate the performance of CSNN, the hit rates of guessing sets generated by CSNN is compared with the two classical approaches (i.e., Probability Context-Free Grammar (PCFG) and 5th-order Markov chain model). In the hit rate experiment, guessing sets of different scales are selected; the results show that the comprehensive performance of guessing sets generated by CSNN is better than PCFG and 5th-order markov chain model. Compared with PCFG, different scales of CSNN guessing sets can improve 5.1%~7.4% in hit rate on some test sets by 107 guesses (average 6.3%); Compared with 5th-order markov chain model, the CSNN guessing sets increased its hit rate by 2.8% to 12% (with an average of 8.2%) by 8×105 guesses." @default.
- W3164436700 created "2021-06-07" @default.
- W3164436700 creator A5028047400 @default.
- W3164436700 creator A5060062239 @default.
- W3164436700 creator A5060334758 @default.
- W3164436700 creator A5074238461 @default.
- W3164436700 creator A5082316109 @default.
- W3164436700 date "2020-08-18" @default.
- W3164436700 modified "2023-09-23" @default.
- W3164436700 title "CSNN: Password Set Security Evaluation Method Based on Chinese Syllables and Neural Network" @default.
- W3164436700 doi "https://doi.org/10.11999/jeit190856" @default.
- W3164436700 hasPublicationYear "2020" @default.
- W3164436700 type Work @default.
- W3164436700 sameAs 3164436700 @default.
- W3164436700 citedByCount "0" @default.
- W3164436700 crossrefType "journal-article" @default.
- W3164436700 hasAuthorship W3164436700A5028047400 @default.
- W3164436700 hasAuthorship W3164436700A5060062239 @default.
- W3164436700 hasAuthorship W3164436700A5060334758 @default.
- W3164436700 hasAuthorship W3164436700A5074238461 @default.
- W3164436700 hasAuthorship W3164436700A5082316109 @default.
- W3164436700 hasConcept C109297577 @default.
- W3164436700 hasConcept C119857082 @default.
- W3164436700 hasConcept C154945302 @default.
- W3164436700 hasConcept C177264268 @default.
- W3164436700 hasConcept C199360897 @default.
- W3164436700 hasConcept C204321447 @default.
- W3164436700 hasConcept C28490314 @default.
- W3164436700 hasConcept C3847113 @default.
- W3164436700 hasConcept C38652104 @default.
- W3164436700 hasConcept C41008148 @default.
- W3164436700 hasConcept C50644808 @default.
- W3164436700 hasConcept C70530487 @default.
- W3164436700 hasConcept C89479133 @default.
- W3164436700 hasConcept C98763669 @default.
- W3164436700 hasConceptScore W3164436700C109297577 @default.
- W3164436700 hasConceptScore W3164436700C119857082 @default.
- W3164436700 hasConceptScore W3164436700C154945302 @default.
- W3164436700 hasConceptScore W3164436700C177264268 @default.
- W3164436700 hasConceptScore W3164436700C199360897 @default.
- W3164436700 hasConceptScore W3164436700C204321447 @default.
- W3164436700 hasConceptScore W3164436700C28490314 @default.
- W3164436700 hasConceptScore W3164436700C3847113 @default.
- W3164436700 hasConceptScore W3164436700C38652104 @default.
- W3164436700 hasConceptScore W3164436700C41008148 @default.
- W3164436700 hasConceptScore W3164436700C50644808 @default.
- W3164436700 hasConceptScore W3164436700C70530487 @default.
- W3164436700 hasConceptScore W3164436700C89479133 @default.
- W3164436700 hasConceptScore W3164436700C98763669 @default.
- W3164436700 hasIssue "8" @default.
- W3164436700 hasLocation W31644367001 @default.
- W3164436700 hasOpenAccess W3164436700 @default.
- W3164436700 hasPrimaryLocation W31644367001 @default.
- W3164436700 hasRelatedWork W1588735863 @default.
- W3164436700 hasRelatedWork W1966167785 @default.
- W3164436700 hasRelatedWork W2019895912 @default.
- W3164436700 hasRelatedWork W2021620917 @default.
- W3164436700 hasRelatedWork W2045879682 @default.
- W3164436700 hasRelatedWork W2067797441 @default.
- W3164436700 hasRelatedWork W2085373452 @default.
- W3164436700 hasRelatedWork W2105402874 @default.
- W3164436700 hasRelatedWork W2139593330 @default.
- W3164436700 hasRelatedWork W2251954712 @default.
- W3164436700 hasRelatedWork W2325797075 @default.
- W3164436700 hasRelatedWork W2374875879 @default.
- W3164436700 hasRelatedWork W2900782180 @default.
- W3164436700 hasRelatedWork W3148232520 @default.
- W3164436700 hasRelatedWork W3156862390 @default.
- W3164436700 hasRelatedWork W3188622144 @default.
- W3164436700 hasRelatedWork W839331958 @default.
- W3164436700 hasRelatedWork W2137194186 @default.
- W3164436700 hasRelatedWork W2928905324 @default.
- W3164436700 hasRelatedWork W3156309690 @default.
- W3164436700 hasVolume "42" @default.
- W3164436700 isParatext "false" @default.
- W3164436700 isRetracted "false" @default.
- W3164436700 magId "3164436700" @default.
- W3164436700 workType "article" @default.