Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164463435> ?p ?o ?g. }
- W3164463435 endingPage "230384" @default.
- W3164463435 startingPage "230384" @default.
- W3164463435 abstract "Electrolyte infiltration is one of the critical steps of the manufacturing process of lithium ion batteries (LIB). We present here an innovative machine learning (ML) model, based on the multi-layers perceptron (MLP) approach, to fast and accurately predict electrolyte flow in three dimensions, as well as wetting degree and time for LIB electrodes. The ML model is trained on a database generated using a 3D-resolved physical model based on the Lattice Boltzmann Method (LBM) and a NMC electrode mesostructure obtained by X-ray micro-computer tomography. The trained ML model is able to predict the electrode filling process, with ultralow computational cost and with high accuracy. Also, systematic sensitivity analysis was carried out to unravel the spatial relationship between electrode mesostructure parameters and predicted infiltration process characteristics. This paves the way towards massive computational screening of electrode mesostructures/electrolyte pairs to unravel their impact on the cell wetting and optimize the infiltration conditions." @default.
- W3164463435 created "2021-06-07" @default.
- W3164463435 creator A5000078218 @default.
- W3164463435 creator A5035218043 @default.
- W3164463435 creator A5063748988 @default.
- W3164463435 creator A5071179730 @default.
- W3164463435 creator A5080027604 @default.
- W3164463435 creator A5086166384 @default.
- W3164463435 date "2021-11-01" @default.
- W3164463435 modified "2023-10-16" @default.
- W3164463435 title "Machine learning 3D-resolved prediction of electrolyte infiltration in battery porous electrodes" @default.
- W3164463435 cites W2052909548 @default.
- W3164463435 cites W2274482458 @default.
- W3164463435 cites W2783170020 @default.
- W3164463435 cites W2791191392 @default.
- W3164463435 cites W2888296885 @default.
- W3164463435 cites W2896482478 @default.
- W3164463435 cites W2905528709 @default.
- W3164463435 cites W2907502226 @default.
- W3164463435 cites W2916032760 @default.
- W3164463435 cites W2922050530 @default.
- W3164463435 cites W2929588029 @default.
- W3164463435 cites W2945475836 @default.
- W3164463435 cites W2955897570 @default.
- W3164463435 cites W2964597834 @default.
- W3164463435 cites W2984245963 @default.
- W3164463435 cites W3003021798 @default.
- W3164463435 cites W3005042663 @default.
- W3164463435 cites W3005746644 @default.
- W3164463435 cites W3011799660 @default.
- W3164463435 cites W3011981873 @default.
- W3164463435 cites W3033937423 @default.
- W3164463435 cites W3044579397 @default.
- W3164463435 cites W3095574369 @default.
- W3164463435 cites W3099878876 @default.
- W3164463435 cites W3117254276 @default.
- W3164463435 cites W3132405798 @default.
- W3164463435 cites W3136441139 @default.
- W3164463435 cites W3146527266 @default.
- W3164463435 cites W3154830578 @default.
- W3164463435 cites W4214677989 @default.
- W3164463435 doi "https://doi.org/10.1016/j.jpowsour.2021.230384" @default.
- W3164463435 hasPublicationYear "2021" @default.
- W3164463435 type Work @default.
- W3164463435 sameAs 3164463435 @default.
- W3164463435 citedByCount "18" @default.
- W3164463435 countsByYear W31644634352021 @default.
- W3164463435 countsByYear W31644634352022 @default.
- W3164463435 countsByYear W31644634352023 @default.
- W3164463435 crossrefType "journal-article" @default.
- W3164463435 hasAuthorship W3164463435A5000078218 @default.
- W3164463435 hasAuthorship W3164463435A5035218043 @default.
- W3164463435 hasAuthorship W3164463435A5063748988 @default.
- W3164463435 hasAuthorship W3164463435A5071179730 @default.
- W3164463435 hasAuthorship W3164463435A5080027604 @default.
- W3164463435 hasAuthorship W3164463435A5086166384 @default.
- W3164463435 hasBestOaLocation W31644634351 @default.
- W3164463435 hasConcept C121332964 @default.
- W3164463435 hasConcept C134514944 @default.
- W3164463435 hasConcept C147789679 @default.
- W3164463435 hasConcept C153400128 @default.
- W3164463435 hasConcept C154945302 @default.
- W3164463435 hasConcept C159985019 @default.
- W3164463435 hasConcept C163258240 @default.
- W3164463435 hasConcept C17525397 @default.
- W3164463435 hasConcept C185592680 @default.
- W3164463435 hasConcept C192562407 @default.
- W3164463435 hasConcept C21821499 @default.
- W3164463435 hasConcept C2779197387 @default.
- W3164463435 hasConcept C41008148 @default.
- W3164463435 hasConcept C555008776 @default.
- W3164463435 hasConcept C57879066 @default.
- W3164463435 hasConcept C6648577 @default.
- W3164463435 hasConcept C68801617 @default.
- W3164463435 hasConcept C97355855 @default.
- W3164463435 hasConceptScore W3164463435C121332964 @default.
- W3164463435 hasConceptScore W3164463435C134514944 @default.
- W3164463435 hasConceptScore W3164463435C147789679 @default.
- W3164463435 hasConceptScore W3164463435C153400128 @default.
- W3164463435 hasConceptScore W3164463435C154945302 @default.
- W3164463435 hasConceptScore W3164463435C159985019 @default.
- W3164463435 hasConceptScore W3164463435C163258240 @default.
- W3164463435 hasConceptScore W3164463435C17525397 @default.
- W3164463435 hasConceptScore W3164463435C185592680 @default.
- W3164463435 hasConceptScore W3164463435C192562407 @default.
- W3164463435 hasConceptScore W3164463435C21821499 @default.
- W3164463435 hasConceptScore W3164463435C2779197387 @default.
- W3164463435 hasConceptScore W3164463435C41008148 @default.
- W3164463435 hasConceptScore W3164463435C555008776 @default.
- W3164463435 hasConceptScore W3164463435C57879066 @default.
- W3164463435 hasConceptScore W3164463435C6648577 @default.
- W3164463435 hasConceptScore W3164463435C68801617 @default.
- W3164463435 hasConceptScore W3164463435C97355855 @default.
- W3164463435 hasFunder F4320306084 @default.
- W3164463435 hasFunder F4320316892 @default.
- W3164463435 hasFunder F4320322893 @default.
- W3164463435 hasFunder F4320326227 @default.
- W3164463435 hasFunder F4320332360 @default.