Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164475342> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3164475342 abstract "GCN based on time and space is an essential part of smart city construction because it can capture the spatiotemporal dynamics and effectively analyze the traffic data to get the best prediction results. In the specific operation of the model, the adjustment and optimal selection of super parameters can make the model provide the best results, thus saving time, cost and computing power. When it comes to the prediction scenarios with low computational power and urgent demand, the existing super parameter search methods and optimization models lack efficiency and accuracy. Therefore, this paper proposes a super parameter search and optimization method based on cross validation, which can efficiently and accurately optimize the parameters, and select the best parameters by using the similarity between the learning and training errors corresponding to each super parameter To improve the prediction ability of the model. Through the verification of the actual data set, the model runs well, and can provide the best prediction results for the traffic flow and other scenarios dominated by spatiotemporal state." @default.
- W3164475342 created "2021-06-07" @default.
- W3164475342 creator A5010738468 @default.
- W3164475342 creator A5011408985 @default.
- W3164475342 creator A5039710242 @default.
- W3164475342 creator A5040924293 @default.
- W3164475342 creator A5068096252 @default.
- W3164475342 date "2021-01-01" @default.
- W3164475342 modified "2023-10-15" @default.
- W3164475342 title "Hyperparameter Analysis of Temporal Graph Convolutional Network Model Applied to Traffic Prediction" @default.
- W3164475342 cites W2008483594 @default.
- W3164475342 cites W2165991108 @default.
- W3164475342 cites W2257979135 @default.
- W3164475342 cites W2511250566 @default.
- W3164475342 cites W2526375869 @default.
- W3164475342 cites W2572939427 @default.
- W3164475342 cites W2574978968 @default.
- W3164475342 cites W2755300819 @default.
- W3164475342 cites W2766447205 @default.
- W3164475342 cites W2781703105 @default.
- W3164475342 cites W2783474004 @default.
- W3164475342 cites W2790314617 @default.
- W3164475342 cites W2958333154 @default.
- W3164475342 cites W2964054038 @default.
- W3164475342 cites W2964199361 @default.
- W3164475342 cites W2964801446 @default.
- W3164475342 cites W2980814855 @default.
- W3164475342 cites W2984000169 @default.
- W3164475342 cites W2991205212 @default.
- W3164475342 cites W2994893585 @default.
- W3164475342 cites W2995521225 @default.
- W3164475342 cites W2996751857 @default.
- W3164475342 cites W2997551653 @default.
- W3164475342 cites W3003880773 @default.
- W3164475342 cites W3004884952 @default.
- W3164475342 cites W4253787239 @default.
- W3164475342 doi "https://doi.org/10.1007/978-3-030-72792-5_53" @default.
- W3164475342 hasPublicationYear "2021" @default.
- W3164475342 type Work @default.
- W3164475342 sameAs 3164475342 @default.
- W3164475342 citedByCount "0" @default.
- W3164475342 crossrefType "book-chapter" @default.
- W3164475342 hasAuthorship W3164475342A5010738468 @default.
- W3164475342 hasAuthorship W3164475342A5011408985 @default.
- W3164475342 hasAuthorship W3164475342A5039710242 @default.
- W3164475342 hasAuthorship W3164475342A5040924293 @default.
- W3164475342 hasAuthorship W3164475342A5068096252 @default.
- W3164475342 hasConcept C119857082 @default.
- W3164475342 hasConcept C124101348 @default.
- W3164475342 hasConcept C132525143 @default.
- W3164475342 hasConcept C154945302 @default.
- W3164475342 hasConcept C177264268 @default.
- W3164475342 hasConcept C199360897 @default.
- W3164475342 hasConcept C41008148 @default.
- W3164475342 hasConcept C80444323 @default.
- W3164475342 hasConcept C8642999 @default.
- W3164475342 hasConceptScore W3164475342C119857082 @default.
- W3164475342 hasConceptScore W3164475342C124101348 @default.
- W3164475342 hasConceptScore W3164475342C132525143 @default.
- W3164475342 hasConceptScore W3164475342C154945302 @default.
- W3164475342 hasConceptScore W3164475342C177264268 @default.
- W3164475342 hasConceptScore W3164475342C199360897 @default.
- W3164475342 hasConceptScore W3164475342C41008148 @default.
- W3164475342 hasConceptScore W3164475342C80444323 @default.
- W3164475342 hasConceptScore W3164475342C8642999 @default.
- W3164475342 hasLocation W31644753421 @default.
- W3164475342 hasOpenAccess W3164475342 @default.
- W3164475342 hasPrimaryLocation W31644753421 @default.
- W3164475342 hasRelatedWork W10719664 @default.
- W3164475342 hasRelatedWork W12165144 @default.
- W3164475342 hasRelatedWork W12712126 @default.
- W3164475342 hasRelatedWork W13536281 @default.
- W3164475342 hasRelatedWork W1549441 @default.
- W3164475342 hasRelatedWork W193554 @default.
- W3164475342 hasRelatedWork W3989876 @default.
- W3164475342 hasRelatedWork W6266756 @default.
- W3164475342 hasRelatedWork W7842670 @default.
- W3164475342 hasRelatedWork W8198582 @default.
- W3164475342 isParatext "false" @default.
- W3164475342 isRetracted "false" @default.
- W3164475342 magId "3164475342" @default.
- W3164475342 workType "book-chapter" @default.