Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164668917> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3164668917 abstract "Objective: To assess automatic computer-aided in-situ recognition of morphological features of and mixed urinary stones using intraoperative digital endoscopic images acquired in a clinical setting. Materials and methods: In this single-centre study, an experienced urologist intraoperatively and prospectively examined the surface and section of all kidney stones encountered. Calcium oxalate monohydrate (COM/Ia), dihydrate (COD/IIb) and uric acid (UA/IIIb) morphological criteria were collected and classified to generate annotated datasets. A deep convolutional neural network (CNN) was trained to predict the composition of both and mixed stones. To explain the predictions of the deep neural network model, coarse localisation heat-maps were plotted to pinpoint key areas identified by the network. Results: This study included 347 and 236 observations of stone surface and stone section, respectively. A highest sensitivity of 98 % was obtained for the type pure using surface images. The most frequently encountered morphology was that of the type pure Ia/COM; it was correctly predicted in 91 % and 94 % of cases using surface and section images, respectively. Of the mixed type Ia/COM+IIb/COD, Ia/COM was predicted in 84 % of cases using surface images, IIb/COD in 70 % of cases, and both in 65 % of cases. Concerning mixed Ia/COM+IIIb/UA stones, Ia/COM was predicted in 91 % of cases using section images, IIIb/UA in 69 % of cases, and both in 74 % of cases. Conclusions: This preliminary study demonstrates that deep convolutional neural networks are promising to identify kidney stone composition from endoscopic images acquired intraoperatively. Both and mixed stone composition could be discriminated. Collected in a clinical setting, surface and section images analysed by deep CNN provide valuable information about stone morphology for computer-aided diagnosis." @default.
- W3164668917 created "2021-06-07" @default.
- W3164668917 creator A5019057109 @default.
- W3164668917 creator A5021633224 @default.
- W3164668917 creator A5038321597 @default.
- W3164668917 creator A5047251846 @default.
- W3164668917 creator A5047666476 @default.
- W3164668917 creator A5067480829 @default.
- W3164668917 creator A5076566757 @default.
- W3164668917 date "2021-05-22" @default.
- W3164668917 modified "2023-09-27" @default.
- W3164668917 title "Towards Automatic Recognition of Pure & Mixed Stones using Intraoperative Endoscopic Digital Images" @default.
- W3164668917 cites W1680392829 @default.
- W3164668917 cites W196280805 @default.
- W3164668917 cites W2026188906 @default.
- W3164668917 cites W2057737973 @default.
- W3164668917 cites W2108501461 @default.
- W3164668917 cites W2134363177 @default.
- W3164668917 cites W2194775991 @default.
- W3164668917 cites W2419510799 @default.
- W3164668917 cites W2606661132 @default.
- W3164668917 cites W2736298595 @default.
- W3164668917 cites W2786890437 @default.
- W3164668917 cites W2808964188 @default.
- W3164668917 cites W2913028552 @default.
- W3164668917 cites W2944510780 @default.
- W3164668917 cites W2962858109 @default.
- W3164668917 cites W2964121744 @default.
- W3164668917 cites W3006594177 @default.
- W3164668917 cites W3022622359 @default.
- W3164668917 cites W3049603761 @default.
- W3164668917 cites W3082816544 @default.
- W3164668917 cites W3107390157 @default.
- W3164668917 cites W3111630737 @default.
- W3164668917 cites W3134171531 @default.
- W3164668917 hasPublicationYear "2021" @default.
- W3164668917 type Work @default.
- W3164668917 sameAs 3164668917 @default.
- W3164668917 citedByCount "0" @default.
- W3164668917 crossrefType "posted-content" @default.
- W3164668917 hasAuthorship W3164668917A5019057109 @default.
- W3164668917 hasAuthorship W3164668917A5021633224 @default.
- W3164668917 hasAuthorship W3164668917A5038321597 @default.
- W3164668917 hasAuthorship W3164668917A5047251846 @default.
- W3164668917 hasAuthorship W3164668917A5047666476 @default.
- W3164668917 hasAuthorship W3164668917A5067480829 @default.
- W3164668917 hasAuthorship W3164668917A5076566757 @default.
- W3164668917 hasConcept C126322002 @default.
- W3164668917 hasConcept C141071460 @default.
- W3164668917 hasConcept C154945302 @default.
- W3164668917 hasConcept C2779403450 @default.
- W3164668917 hasConcept C2992298831 @default.
- W3164668917 hasConcept C41008148 @default.
- W3164668917 hasConcept C71924100 @default.
- W3164668917 hasConcept C77411442 @default.
- W3164668917 hasConcept C81363708 @default.
- W3164668917 hasConceptScore W3164668917C126322002 @default.
- W3164668917 hasConceptScore W3164668917C141071460 @default.
- W3164668917 hasConceptScore W3164668917C154945302 @default.
- W3164668917 hasConceptScore W3164668917C2779403450 @default.
- W3164668917 hasConceptScore W3164668917C2992298831 @default.
- W3164668917 hasConceptScore W3164668917C41008148 @default.
- W3164668917 hasConceptScore W3164668917C71924100 @default.
- W3164668917 hasConceptScore W3164668917C77411442 @default.
- W3164668917 hasConceptScore W3164668917C81363708 @default.
- W3164668917 hasLocation W31646689171 @default.
- W3164668917 hasOpenAccess W3164668917 @default.
- W3164668917 hasPrimaryLocation W31646689171 @default.
- W3164668917 hasRelatedWork W2758488568 @default.
- W3164668917 hasRelatedWork W3006594177 @default.
- W3164668917 hasRelatedWork W3092599367 @default.
- W3164668917 isParatext "false" @default.
- W3164668917 isRetracted "false" @default.
- W3164668917 magId "3164668917" @default.
- W3164668917 workType "article" @default.