Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164702990> ?p ?o ?g. }
- W3164702990 endingPage "3036" @default.
- W3164702990 startingPage "3026" @default.
- W3164702990 abstract "Models predicting mortality in heart failure (HF) patients are often limited with regard to performance and applicability. The aim of this study was to develop a reliable algorithm to compute expected in-hospital mortality rates in HF cohorts on a population level based on administrative data comparing regression analysis with different machine learning (ML) models.Inpatient cases with primary International Statistical Classification of Diseases and Related Health Problems (ICD-10) encoded discharge diagnosis of HF non-electively admitted to 86 German Helios hospitals between 1 January 2016 and 31 December 2018 were identified. The dataset was randomly split 75%/25% for model development and testing. Highly unbalanced variables were removed. Four ML algorithms were applied, and all algorithms were tuned using a grid search with multiple repetitions. Model performance was evaluated by computing receiver operating characteristic areas under the curve. In total, 59 125 cases (69.8% aged 75 years or older, 51.9% female) were investigated, and in-hospital mortality was 6.20%. Areas under the curve of all ML algorithms outperformed regression analysis in the testing dataset with values of 0.829 [95% confidence interval (CI) 0.814-0.843] for logistic regression, 0.875 (95% CI 0.863-0.886) for random forest, 0.882 (95% CI 0.871-0.893) for gradient boosting machine, 0.866 (95% CI 0.854-0.878) for single-layer neural networks, and 0.882 (95% CI 0.872-0.893) for extreme gradient boosting. Brier scores demonstrated a good calibration especially of the latter three models.We introduced reliable models to calculate expected in-hospital mortality based only on administrative routine data using ML algorithms. A broad application could supplement quality measurement programs and therefore improve future HF patient care." @default.
- W3164702990 created "2021-06-07" @default.
- W3164702990 creator A5002039022 @default.
- W3164702990 creator A5011476849 @default.
- W3164702990 creator A5019758279 @default.
- W3164702990 creator A5024354264 @default.
- W3164702990 creator A5027906347 @default.
- W3164702990 creator A5032775258 @default.
- W3164702990 creator A5035752353 @default.
- W3164702990 creator A5069036914 @default.
- W3164702990 creator A5070141614 @default.
- W3164702990 date "2021-06-04" @default.
- W3164702990 modified "2023-10-16" @default.
- W3164702990 title "Machine learning algorithms for claims data‐based prediction of in‐hospital mortality in patients with heart failure" @default.
- W3164702990 cites W171307226 @default.
- W3164702990 cites W1930043895 @default.
- W3164702990 cites W1931301754 @default.
- W3164702990 cites W2013009184 @default.
- W3164702990 cites W2061326496 @default.
- W3164702990 cites W2151185534 @default.
- W3164702990 cites W2225109326 @default.
- W3164702990 cites W2612251907 @default.
- W3164702990 cites W2743269518 @default.
- W3164702990 cites W2793003225 @default.
- W3164702990 cites W2805813844 @default.
- W3164702990 cites W2888608259 @default.
- W3164702990 cites W2896258191 @default.
- W3164702990 cites W2903156192 @default.
- W3164702990 cites W2914302538 @default.
- W3164702990 cites W2916222128 @default.
- W3164702990 cites W2955694212 @default.
- W3164702990 cites W2968398558 @default.
- W3164702990 cites W2972004025 @default.
- W3164702990 cites W2979638097 @default.
- W3164702990 cites W2979762289 @default.
- W3164702990 cites W2980815940 @default.
- W3164702990 cites W2981574419 @default.
- W3164702990 cites W2985220169 @default.
- W3164702990 cites W2995068554 @default.
- W3164702990 cites W2999860311 @default.
- W3164702990 cites W3000470572 @default.
- W3164702990 cites W3004804983 @default.
- W3164702990 cites W3008809566 @default.
- W3164702990 cites W3021644017 @default.
- W3164702990 cites W3024542456 @default.
- W3164702990 cites W3042407815 @default.
- W3164702990 cites W3083697788 @default.
- W3164702990 cites W3096996914 @default.
- W3164702990 doi "https://doi.org/10.1002/ehf2.13398" @default.
- W3164702990 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8318394" @default.
- W3164702990 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34085775" @default.
- W3164702990 hasPublicationYear "2021" @default.
- W3164702990 type Work @default.
- W3164702990 sameAs 3164702990 @default.
- W3164702990 citedByCount "9" @default.
- W3164702990 countsByYear W31647029902021 @default.
- W3164702990 countsByYear W31647029902022 @default.
- W3164702990 countsByYear W31647029902023 @default.
- W3164702990 crossrefType "journal-article" @default.
- W3164702990 hasAuthorship W3164702990A5002039022 @default.
- W3164702990 hasAuthorship W3164702990A5011476849 @default.
- W3164702990 hasAuthorship W3164702990A5019758279 @default.
- W3164702990 hasAuthorship W3164702990A5024354264 @default.
- W3164702990 hasAuthorship W3164702990A5027906347 @default.
- W3164702990 hasAuthorship W3164702990A5032775258 @default.
- W3164702990 hasAuthorship W3164702990A5035752353 @default.
- W3164702990 hasAuthorship W3164702990A5069036914 @default.
- W3164702990 hasAuthorship W3164702990A5070141614 @default.
- W3164702990 hasBestOaLocation W31647029902 @default.
- W3164702990 hasConcept C105795698 @default.
- W3164702990 hasConcept C11413529 @default.
- W3164702990 hasConcept C119857082 @default.
- W3164702990 hasConcept C126322002 @default.
- W3164702990 hasConcept C151956035 @default.
- W3164702990 hasConcept C154945302 @default.
- W3164702990 hasConcept C169258074 @default.
- W3164702990 hasConcept C33923547 @default.
- W3164702990 hasConcept C35405484 @default.
- W3164702990 hasConcept C41008148 @default.
- W3164702990 hasConcept C44249647 @default.
- W3164702990 hasConcept C46686674 @default.
- W3164702990 hasConcept C58471807 @default.
- W3164702990 hasConcept C70153297 @default.
- W3164702990 hasConcept C71924100 @default.
- W3164702990 hasConceptScore W3164702990C105795698 @default.
- W3164702990 hasConceptScore W3164702990C11413529 @default.
- W3164702990 hasConceptScore W3164702990C119857082 @default.
- W3164702990 hasConceptScore W3164702990C126322002 @default.
- W3164702990 hasConceptScore W3164702990C151956035 @default.
- W3164702990 hasConceptScore W3164702990C154945302 @default.
- W3164702990 hasConceptScore W3164702990C169258074 @default.
- W3164702990 hasConceptScore W3164702990C33923547 @default.
- W3164702990 hasConceptScore W3164702990C35405484 @default.
- W3164702990 hasConceptScore W3164702990C41008148 @default.
- W3164702990 hasConceptScore W3164702990C44249647 @default.
- W3164702990 hasConceptScore W3164702990C46686674 @default.
- W3164702990 hasConceptScore W3164702990C58471807 @default.
- W3164702990 hasConceptScore W3164702990C70153297 @default.