Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164723874> ?p ?o ?g. }
- W3164723874 abstract "Transition probability density functions (TPDFs) are fundamental to computational finance, including option pricing and hedging. Advancing recent work in deep learning, we develop novel neural TPDF generators through solving backward Kolmogorov equations in parametric space for cumulative probability functions. The generators are ultra-fast, very accurate and can be trained for any asset model described by stochastic differential equations. These are single solve, so they do not require retraining when parameters of the stochastic model are changed (e.g. recalibration of volatility). Once trained, the neural TDPF generators can be transferred to less powerful computers where they can be used for e.g. option pricing at speeds as fast as if the TPDF were known in a closed form. We illustrate the computational efficiency of the proposed neural approximations of TPDFs by inserting them into numerical option pricing methods. We demonstrate a wide range of applications including the Black-Scholes-Merton model, the standard Heston model, the SABR model, and jump-diffusion models. These numerical experiments confirm the ultra-fast speed and high accuracy of the developed neural TPDF generators." @default.
- W3164723874 created "2021-06-07" @default.
- W3164723874 creator A5045681724 @default.
- W3164723874 creator A5061035907 @default.
- W3164723874 creator A5081243775 @default.
- W3164723874 date "2021-05-21" @default.
- W3164723874 modified "2023-09-27" @default.
- W3164723874 title "Deep learning of transition probability densities for stochastic asset models with applications in option pricing" @default.
- W3164723874 cites W1503295912 @default.
- W3164723874 cites W1522301498 @default.
- W3164723874 cites W1556571995 @default.
- W3164723874 cites W1591798773 @default.
- W3164723874 cites W1642251103 @default.
- W3164723874 cites W1970454553 @default.
- W3164723874 cites W1976020937 @default.
- W3164723874 cites W1978075626 @default.
- W3164723874 cites W2052254680 @default.
- W3164723874 cites W2064978316 @default.
- W3164723874 cites W2070546821 @default.
- W3164723874 cites W2072685235 @default.
- W3164723874 cites W2076063813 @default.
- W3164723874 cites W2077791698 @default.
- W3164723874 cites W2098754649 @default.
- W3164723874 cites W2121198253 @default.
- W3164723874 cites W2125945201 @default.
- W3164723874 cites W2136922672 @default.
- W3164723874 cites W2147035016 @default.
- W3164723874 cites W2148666448 @default.
- W3164723874 cites W2151065060 @default.
- W3164723874 cites W2151318757 @default.
- W3164723874 cites W2592427533 @default.
- W3164723874 cites W2749028154 @default.
- W3164723874 cites W2893566926 @default.
- W3164723874 cites W2900967446 @default.
- W3164723874 cites W2933916181 @default.
- W3164723874 cites W293775084 @default.
- W3164723874 cites W2999026783 @default.
- W3164723874 cites W3018221733 @default.
- W3164723874 cites W3020191331 @default.
- W3164723874 cites W3098175809 @default.
- W3164723874 cites W3099157441 @default.
- W3164723874 cites W3101260193 @default.
- W3164723874 cites W3121226382 @default.
- W3164723874 cites W3122681306 @default.
- W3164723874 cites W3124191912 @default.
- W3164723874 cites W3124382693 @default.
- W3164723874 cites W3124436545 @default.
- W3164723874 cites W3124767063 @default.
- W3164723874 cites W3147121454 @default.
- W3164723874 cites W658768638 @default.
- W3164723874 cites W69337820 @default.
- W3164723874 doi "https://doi.org/10.48550/arxiv.2105.10467" @default.
- W3164723874 hasPublicationYear "2021" @default.
- W3164723874 type Work @default.
- W3164723874 sameAs 3164723874 @default.
- W3164723874 citedByCount "0" @default.
- W3164723874 crossrefType "posted-content" @default.
- W3164723874 hasAuthorship W3164723874A5045681724 @default.
- W3164723874 hasAuthorship W3164723874A5061035907 @default.
- W3164723874 hasAuthorship W3164723874A5081243775 @default.
- W3164723874 hasBestOaLocation W31647238741 @default.
- W3164723874 hasConcept C105795698 @default.
- W3164723874 hasConcept C121332964 @default.
- W3164723874 hasConcept C126255220 @default.
- W3164723874 hasConcept C149782125 @default.
- W3164723874 hasConcept C154945302 @default.
- W3164723874 hasConcept C159985019 @default.
- W3164723874 hasConcept C163128081 @default.
- W3164723874 hasConcept C187625094 @default.
- W3164723874 hasConcept C192562407 @default.
- W3164723874 hasConcept C194483076 @default.
- W3164723874 hasConcept C197055811 @default.
- W3164723874 hasConcept C204323151 @default.
- W3164723874 hasConcept C2779664328 @default.
- W3164723874 hasConcept C2780695682 @default.
- W3164723874 hasConcept C28826006 @default.
- W3164723874 hasConcept C33923547 @default.
- W3164723874 hasConcept C41008148 @default.
- W3164723874 hasConcept C50644808 @default.
- W3164723874 hasConcept C51955184 @default.
- W3164723874 hasConcept C62520636 @default.
- W3164723874 hasConcept C85393063 @default.
- W3164723874 hasConcept C91602232 @default.
- W3164723874 hasConceptScore W3164723874C105795698 @default.
- W3164723874 hasConceptScore W3164723874C121332964 @default.
- W3164723874 hasConceptScore W3164723874C126255220 @default.
- W3164723874 hasConceptScore W3164723874C149782125 @default.
- W3164723874 hasConceptScore W3164723874C154945302 @default.
- W3164723874 hasConceptScore W3164723874C159985019 @default.
- W3164723874 hasConceptScore W3164723874C163128081 @default.
- W3164723874 hasConceptScore W3164723874C187625094 @default.
- W3164723874 hasConceptScore W3164723874C192562407 @default.
- W3164723874 hasConceptScore W3164723874C194483076 @default.
- W3164723874 hasConceptScore W3164723874C197055811 @default.
- W3164723874 hasConceptScore W3164723874C204323151 @default.
- W3164723874 hasConceptScore W3164723874C2779664328 @default.
- W3164723874 hasConceptScore W3164723874C2780695682 @default.
- W3164723874 hasConceptScore W3164723874C28826006 @default.
- W3164723874 hasConceptScore W3164723874C33923547 @default.
- W3164723874 hasConceptScore W3164723874C41008148 @default.