Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164788443> ?p ?o ?g. }
- W3164788443 endingPage "R666" @default.
- W3164788443 startingPage "R651" @default.
- W3164788443 abstract "Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a ‘septin code’ for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function. Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a ‘septin code’ for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function. Alongside microtubules, actin and intermediate filaments, septins comprise a distinct filamentous network with important functions in cellular morphogenesis and physiology1Mostowy S. Cossart P. Septins: the fourth component of the cytoskeleton.Nat. Rev. Mol. Cell Biol. 2012; 13: 183-194Crossref PubMed Scopus (426) Google Scholar, 2Spiliotis E.T. McMurray M.A. Masters of asymmetry - lessons and perspectives from 50 years of septins.Mol. Biol. Cell. 2020; 31: 2289-2297Crossref PubMed Scopus (0) Google Scholar, 3Woods B.L. Gladfelter A.S. The state of the septin cytoskeleton from assembly to function.Curr. Opin. Cell Biol. 2021; 68: 105-112Crossref PubMed Scopus (12) Google Scholar, 4Dolat L. Hu Q. Spiliotis E.T. Septin functions in organ system physiology and pathology.Biol. Chem. 2014; 395: 123-141Crossref PubMed Scopus (87) Google Scholar. Septins were originally discovered in the budding yeast Saccharomyces cerevisiae as a network of filaments that associates with the mother–bud neck domain of the plasma membrane and controls the localization of many proteins with roles in cell division and growth2Spiliotis E.T. McMurray M.A. Masters of asymmetry - lessons and perspectives from 50 years of septins.Mol. Biol. Cell. 2020; 31: 2289-2297Crossref PubMed Scopus (0) Google Scholar,5Gladfelter A.S. Pringle J.R. Lew D.J. The septin cortex at the yeast mother-bud neck.Curr. Opin. Microbiol. 2001; 4: 681-689Crossref PubMed Scopus (273) Google Scholar,6Marquardt J. Chen X. Bi E. Architecture, remodeling, and functions of the septin cytoskeleton.Cytoskeleton. 2019; 76: 7-14Crossref Scopus (18) Google Scholar. While absent from plants, septin filaments are ubiquitous in fungi and animal cells, where they localize to the cytoplasm as well as on cell membranes7Pan F. Malmberg R.L. Momany M. Analysis of septins across kingdoms reveals orthology and new motifs.BMC Evol. Biol. 2007; 7: 103Crossref PubMed Scopus (191) Google Scholar, 8Lindsey R. Momany M. Septin localization across kingdoms: three themes with variations.Curr. Opin. Microbiol. 2006; 9: 559-565Crossref PubMed Scopus (45) Google Scholar, 9Poüs C. Klipfel L. Baillet A. Cancer-related functions and subcellular localizations of septins.Front. Cell Dev. Biol. 2016; 4: 126Crossref PubMed Scopus (20) Google Scholar, 10Caudron F. Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes.Dev. Cell. 2009; 16: 493-506Abstract Full Text Full Text PDF PubMed Scopus (212) Google Scholar, 11Bridges A.A. Gladfelter A.S. Septin form and function at the cell cortex.J. Biol. Chem. 2015; 290: 17173-17180Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar. Intriguingly, septins associate with subsets of actin filaments and microtubules12Spiliotis E.T. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases.J. Cell Sci. 2018; 131jcs207555Crossref PubMed Scopus (0) Google Scholar,13Spiliotis E.T. Regulation of microtubule organization and functions by septin GTPases.Cytoskeleton. 2010; 67: 339-345Google Scholar. Over the last twenty years, it has become evident that septins regulate the spatial organization and functions of the actin and microtubule networks in a diversity of cellular processes. Septins are a family of GTP-binding proteins that assemble into oligomeric complexes and polymers that lack end-to-end polarity and are more stable than actin filaments and microtubules2Spiliotis E.T. McMurray M.A. Masters of asymmetry - lessons and perspectives from 50 years of septins.Mol. Biol. Cell. 2020; 31: 2289-2297Crossref PubMed Scopus (0) Google Scholar,3Woods B.L. Gladfelter A.S. The state of the septin cytoskeleton from assembly to function.Curr. Opin. Cell Biol. 2021; 68: 105-112Crossref PubMed Scopus (12) Google Scholar,14Hagiwara A. Tanaka Y. Hikawa R. Morone N. Kusumi A. Kimura H. Kinoshita M. Submembranous septins as relatively stable components of actin-based membrane skeleton.Cytoskeleton. 2011; 68: 512-525Crossref Scopus (48) Google Scholar,15Hu Q. Nelson W.J. Spiliotis E.T. Forchlorfenuron alters mammalian septin assembly, organization, and dynamics.J. Biol. Chem. 2008; 283: 29563-29571Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar. Encoded by paralogous genes that expanded through evolution, septins are classified into four groups that vary mainly in GTPase activity and in the amino- and carboxy-terminal extensions of their core GTP-binding domain (Figure 1A)16Auxier B. Dee J. Berbee M.L. Momany M. Diversity of opisthokont septin proteins reveals structural constraints and conserved motifs.BMC Evol. Biol. 2019; 19: 4Crossref PubMed Scopus (5) Google Scholar,17Kinoshita M. Assembly of mammalian septins.J. Biochem. 2003; 134: 491-496Crossref PubMed Scopus (180) Google Scholar. Septins assemble in a combinatorial fashion by oligomerizing in tandem through homomeric and heteromeric interactions of their GTP-binding domains; this oligomerization is partly instructed by GTP binding and hydrolysis18Sirajuddin M. Farkasovsky M. Hauer F. Kühlmann D. Macara I.G. Weyand M. Stark H. Wittinghofer A. Structural insight into filament formation by mammalian septins.Nature. 2007; 449: 311-315Crossref PubMed Scopus (314) Google Scholar, 19Sirajuddin M. Farkasovsky M. Zent E. Wittinghofer A. GTP-induced conformational changes in septins and implications for function.Proc. Natl. Acad. Sci. USA. 2009; 106: 16592-16597Crossref PubMed Scopus (108) Google Scholar, 20Zent E. Wittinghofer A. Human septin isoforms and the GDP-GTP cycle.Biol. Chem. 2014; 395: 169-180Crossref PubMed Scopus (34) Google Scholar, 21Weems A.D. Johnson C.R. Argueso J.L. McMurray M.A. Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae.Genetics. 2014; 196: 711-727Crossref PubMed Scopus (27) Google Scholar, 22Weems A. McMurray M. The step-wise pathway of septin hetero-octamer assembly in budding yeast.eLife. 2017; 6e23689Crossref PubMed Scopus (29) Google Scholar, 23Valadares N.F. d’ Muniz Pereira H. Ulian Araujo A.P. Garratt R.C. Septin structure and filament assembly.Biophys. Rev. 2017; 9: 481-500Crossref PubMed Scopus (36) Google Scholar. Yeast septins assemble into an octamer, a palindromic dimer of a heterotetrameric complex (Cdc10–Cdc3–Cdc12–Cdc11 or Cdc10–Cdc3–Cdc12–Shs1), which is the repeating unit of septin polymers24Bertin A. McMurray M.A. Grob P. Park S.S. Garcia 3rd, G. Patanwala I. Ng H.L. Alber T. Thorner J. Nogales E. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly.Proc. Natl. Acad. Sci. USA. 2008; 105: 8274-8279Crossref PubMed Scopus (204) Google Scholar. Similarly, mammalian septins form heterooctamers with subunits from one of each of the four septin groups (Figure 1B)25Mendonça D.C. Macedo J.N. Guimarães S.L. Barroso da Silva F.L. Cassago A. Garratt R.C. Portugal R.V. Araujo A.P.U. A revised order of subunits in mammalian septin complexes.Cytoskeleton. 2019; 76: 457-466Crossref Scopus (0) Google Scholar, 26Soroor F. Kim M.S. Palander O. Balachandran Y. Collins R.F. Benlekbir S. Rubinstein J.L. Trimble W.S. Revised subunit order of mammalian septin complexes explains their in vitro polymerization properties.Mol. Biol. Cell. 2021; 32: 289-300Crossref PubMed Google Scholar, 27Kim M.S. Froese C.D. Estey M.P. Trimble W.S. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission.J. Cell Biol. 2011; 195: 815-826Crossref PubMed Scopus (102) Google Scholar, 28Sellin M.E. Sandblad L. Stenmark S. Gullberg M. Deciphering the rules governing assembly order of mammalian septin complexes.Mol. Biol. Cell. 2011; 22: 3152-3164Crossref PubMed Scopus (113) Google Scholar. Paralogs of the same septin group can replace one another, generating septin complexes of various composition and combination17Kinoshita M. Assembly of mammalian septins.J. Biochem. 2003; 134: 491-496Crossref PubMed Scopus (180) Google Scholar,28Sellin M.E. Sandblad L. Stenmark S. Gullberg M. Deciphering the rules governing assembly order of mammalian septin complexes.Mol. Biol. Cell. 2011; 22: 3152-3164Crossref PubMed Scopus (113) Google Scholar,29Rosa H.V.D. Leonardo D.A. Brognara G. Brandão-Neto J. D’Muniz Pereira H. Araújo A.P.U. Garratt R.C. Molecular recognition at septin interfaces: the switches hold the key.J. Mol. Biol. 2020; 432: 5784-5801Crossref PubMed Scopus (2) Google Scholar. In mammalian systems, smaller unit complexes (such as hexamers and tetramers) arise from non-canonical modes of assembly as a result of paralogs having different rates of GTP hydrolysis and/or expression levels30Johnson C.R. Steingesser M.G. Weems A.D. Khan A. Gladfelter A. Bertin A. McMurray M.A. Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast.eLife. 2020; 9e54355Crossref PubMed Scopus (2) Google Scholar, 31Sellin M.E. Stenmark S. Gullberg M. Cell type-specific expression of SEPT3-homology subgroup members controls the subunit number of heteromeric septin complexes.Mol. Biol. Cell. 2014; 25: 1594-1607Crossref PubMed Scopus (0) Google Scholar, 32Mizutani Y. Ito H. Iwamoto I. Morishita R. Kanoh H. Seishima M. Nagata K. Possible role of a septin, SEPT1, in spreading in squamous cell carcinoma DJM-1 cells.Biol. Chem. 2013; 394: 281-290Crossref PubMed Scopus (32) Google Scholar. Septins associate preferentially with membrane domains of micron-scale curvature and subsets of actin filaments and microtubules (Figure 1C)33Bai X. Bowen J.R. Knox T.K. Zhou K. Pendziwiat M. Kuhlenbäumer G. Sindelar C.V. Spiliotis E.T. Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules.J. Cell Biol. 2013; 203: 895-905Crossref PubMed Google Scholar, 34Cannon K.S. Woods B.L. Crutchley J.M. Gladfelter A.S. An amphipathic helix enables septins to sense micrometer-scale membrane curvature.J. Cell Biol. 2019; 218: 1128-1137Crossref PubMed Scopus (35) Google Scholar, 35Meseroll R.A. Howard L. Gladfelter A.S. Septin ring size scaling and dynamics require the coiled-coil region of Shs1p.Mol. Biol. Cell. 2012; 23: 3391-3406Crossref PubMed Google Scholar, 36Smith C. Dolat L. Angelis D. Forgacs E. Spiliotis E.T. Galkin V.E. Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity.J. Mol. Biol. 2015; 427: 3273-3284Crossref PubMed Scopus (42) Google Scholar, 37Hu J. Bai X. Bowen J.R. Dolat L. Korobova F. Yu W. Baas P.W. Svitkina T. Gallo G. Spiliotis E.T. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.Curr. Biol. 2012; 22: 1109-1115Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar, 38Verdier-Pinard P. Salaun D. Bouguenina H. Shimada S. Pophillat M. Audebert S. Agavnian E. Coslet S. Charafe-Jauffret E. Tachibana T. Badache A. Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments.Sci. Rep. 2017; 7: 44976Crossref PubMed Scopus (22) Google Scholar. These interactions are mediated by septin paralogs with unique domains and biochemical properties. For example, paralog-specific amphipathic helices and repeat motifs mediate binding to curved membrane domains and microtubules, respectively33Bai X. Bowen J.R. Knox T.K. Zhou K. Pendziwiat M. Kuhlenbäumer G. Sindelar C.V. Spiliotis E.T. Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules.J. Cell Biol. 2013; 203: 895-905Crossref PubMed Google Scholar,34Cannon K.S. Woods B.L. Crutchley J.M. Gladfelter A.S. An amphipathic helix enables septins to sense micrometer-scale membrane curvature.J. Cell Biol. 2019; 218: 1128-1137Crossref PubMed Scopus (35) Google Scholar. Thus, septins are a highly diverse and modular network of GTPases, the localization, interactions and functions of which are determined by their individual subunits. Here, we focus on actin- and microtubule-associated septins, and their functions in fungal and animal cells. We review how septins interact indirectly and directly with actin filaments. We highlight roles of septins in actomyosin assembly and contractility and describe how these roles are adapted in mechanisms of cytokinesis, cell migration and bacterial infection. Shifting to microtubule-associated septins, we review their functions in the nucleation, dynamics and post-translational modifications of microtubules and how these effects promote cellular morphogenesis. We discuss recent evidence on the regulation of kinesin- and dynein-driven transport by septins, postulating the existence of a ‘septin code’ for the spatial control of intracellular traffic. Lastly, we provide an overview of microtubule-associated septin functions in mitosis and meiosis and conclude with outstanding questions that point to future advances. From fungi to animals, septins are widely observed to colocalize with actin filaments9Poüs C. Klipfel L. Baillet A. Cancer-related functions and subcellular localizations of septins.Front. Cell Dev. Biol. 2016; 4: 126Crossref PubMed Scopus (20) Google Scholar,12Spiliotis E.T. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases.J. Cell Sci. 2018; 131jcs207555Crossref PubMed Scopus (0) Google Scholar,39Lam M. Calvo F. Regulation of mechanotransduction: emerging roles for septins.Cytoskeleton. 2019; 76: 115-122Crossref Scopus (3) Google Scholar. Septins are critical for the assembly and maintenance of functional actomyosin networks at distinct regions of the plasma membrane and cytoplasm2Spiliotis E.T. McMurray M.A. Masters of asymmetry - lessons and perspectives from 50 years of septins.Mol. Biol. Cell. 2020; 31: 2289-2297Crossref PubMed Scopus (0) Google Scholar,12Spiliotis E.T. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases.J. Cell Sci. 2018; 131jcs207555Crossref PubMed Scopus (0) Google Scholar,39Lam M. Calvo F. Regulation of mechanotransduction: emerging roles for septins.Cytoskeleton. 2019; 76: 115-122Crossref Scopus (3) Google Scholar. These networks are commonly associated with saddle-shaped curvatures of the plasma membrane, which outline the neck of membrane protrusions resembling the S. cerevisiae mother–bud neck, and perinuclear as well as lamellar actin stress fibers10Caudron F. Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes.Dev. Cell. 2009; 16: 493-506Abstract Full Text Full Text PDF PubMed Scopus (212) Google Scholar, 11Bridges A.A. Gladfelter A.S. Septin form and function at the cell cortex.J. Biol. Chem. 2015; 290: 17173-17180Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 12Spiliotis E.T. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases.J. Cell Sci. 2018; 131jcs207555Crossref PubMed Scopus (0) Google Scholar. Direct septin roles in the nucleation, dynamics, capping and/or branching of actin filaments have yet to be elucidated; however, septins can regulate actomyosin organization and contractility by interacting with scaffolding and/or clustering actin-binding proteins, and signaling effectors that provide feedback regulation (Figure 2). On fungal cell membranes, septins interact with actin indirectly via myosin II, which is linked to septins by the myosin-binding factor Bni540Bi E. Maddox P. Lew D.J. Salmon E.D. McMillan J.N. Yeh E. Pringle J.R. Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis.J. Cell Biol. 1998; 142: 1301-1312Crossref PubMed Scopus (330) Google Scholar, 41Fang X. Luo J. Nishihama R. Wloka C. Dravis C. Travaglia M. Iwase M. Vallen E.A. Bi E. Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II.J. Cell Biol. 2010; 191: 1333-1350Crossref PubMed Scopus (81) Google Scholar, 42Feng Z. Okada S. Cai G. Zhou B. Bi E. Myosin-II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis.Mol. Biol. Cell. 2015; 26: 1211-1224Crossref PubMed Scopus (0) Google Scholar, 43Finnigan G.C. Booth E.A. Duvalyan A. Liao E.N. Thorner J. The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding factor Bni5 to the bud neck in Saccharomyces cerevisiae.Genetics. 2015; 200: 843-862Crossref PubMed Scopus (29) Google Scholar, and via actin-binding protein complexes that contain the formin Bnr1 as well as Bin/amphiphysin/Rvs (BAR) domain and ezrin/radixin/moesin (ERM) family proteins44Garabedian M.V. Wirshing A. Vakhrusheva A. Turegun B. Sokolova O.S. Goode B.L. A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables.Mol. Biol. Cell. 2020; 31: 1988-2001Crossref PubMed Scopus (0) Google Scholar, 45Oh Y. Schreiter J. Nishihama R. Wloka C. Bi E. Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle.Mol. Biol. Cell. 2013; 24: 1305-1320Crossref PubMed Scopus (32) Google Scholar, 46Dagdas Y.F. Yoshino K. Dagdas G. Ryder L.S. Bielska E. Steinberg G. Talbot N.J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae.Science. 2012; 336: 1590-1595Crossref PubMed Scopus (196) Google Scholar. In animal cells, by contrast, membrane and cytoplasmic septins interact both directly and indirectly with actin filaments32Mizutani Y. Ito H. Iwamoto I. Morishita R. Kanoh H. Seishima M. Nagata K. Possible role of a septin, SEPT1, in spreading in squamous cell carcinoma DJM-1 cells.Biol. Chem. 2013; 394: 281-290Crossref PubMed Scopus (32) Google Scholar,37Hu J. Bai X. Bowen J.R. Dolat L. Korobova F. Yu W. Baas P.W. Svitkina T. Gallo G. Spiliotis E.T. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.Curr. Biol. 2012; 22: 1109-1115Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar,47Kinoshita M. Kumar S. Mizoguchi A. Ide C. Kinoshita A. Haraguchi T. Hiraoka Y. Noda M. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures.Genes Dev. 1997; 11: 1535-1547Crossref PubMed Google Scholar, 48Schmidt K. Nichols B.J. Functional interdependence between septin and actin cytoskeleton.BMC Cell Biol. 2004; 5: 43Crossref PubMed Scopus (71) Google Scholar, 49Kremer B.E. Adang L.A. Macara I.G. Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7.Cell. 2007; 130: 837-850Abstract Full Text Full Text PDF PubMed Scopus (157) Google Scholar, 50Kinoshita M. Field C.M. Coughlin M.L. Straight A.F. Mitchison T.J. Self- and actin-templated assembly of mammalian septins.Dev. Cell. 2002; 3: 791-802Abstract Full Text Full Text PDF PubMed Scopus (387) Google Scholar, 51Calvo F. Ranftl R. Hooper S. Farrugia A.J. Moeendarbary E. Bruckbauer A. Batista F. Charras G. Sahai E. Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts.Cell Rep. 2015; 13: 2699-2714Abstract Full Text Full Text PDF PubMed Google Scholar. In vitro reconstitution assays demonstrated that insect septins (Drosophila Sep1–Sep2–Pnut) and mammalian septins (human SEPT2–SEPT6–SEPT7 and SEPT9) associate directly with polymerizing and pre-assembled actin filaments, crosslinking them into curved, circular and linear bundles36Smith C. Dolat L. Angelis D. Forgacs E. Spiliotis E.T. Galkin V.E. Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity.J. Mol. Biol. 2015; 427: 3273-3284Crossref PubMed Scopus (42) Google Scholar,52Mavrakis M. Azou-Gros Y. Tsai F.C. Alvarado J. Bertin A. Iv F. Kress A. Brasselet S. Koenderink G.H. Lecuit T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.Nat. Cell Biol. 2014; 16: 322-334Crossref PubMed Scopus (123) Google Scholar,53Dolat L. Hunyara J.L. Bowen J.R. Karasmanis E.P. Elgawly M. Galkin V.E. Spiliotis E.T. Septins promote stress fiber-mediated maturation of focal adhesions and renal epithelial motility.J. Cell Biol. 2014; 207: 225-235Crossref PubMed Scopus (58) Google Scholar. However, in vitro SEPT2–SEPT6–SEPT7 binding to actin filaments has also been shown to require the actin-binding protein anillin50Kinoshita M. Field C.M. Coughlin M.L. Straight A.F. Mitchison T.J. Self- and actin-templated assembly of mammalian septins.Dev. Cell. 2002; 3: 791-802Abstract Full Text Full Text PDF PubMed Scopus (387) Google Scholar. It is unclear whether septins exist as oligomers or filamentous polymers on the surface of intracellular actin filaments, but the oligomeric and polymeric states of septins correlate with the in vitro formation of curved and linear bundles, respectively52Mavrakis M. Azou-Gros Y. Tsai F.C. Alvarado J. Bertin A. Iv F. Kress A. Brasselet S. Koenderink G.H. Lecuit T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.Nat. Cell Biol. 2014; 16: 322-334Crossref PubMed Scopus (123) Google Scholar. Hence, the actin-binding, -bending and -crosslinking properties of septins may depend on their oligomeric and polymeric states, which also have differential effects on microtubule dynamics54Nakos K. Radler M.R. Spiliotis E.T. Septin 2/6/7 complexes tune microtubule plus-end growth and EB1 binding in a concentration- and filament-dependent manner.Mol. Biol. Cell. 2019; 30: 2913-2928Crossref PubMed Scopus (9) Google Scholar,55Nakos K. Rosenberg M. Spiliotis E.T. Regulation of microtubule plus end dynamics by septin 9.Cytoskeleton. 2019; 76: 83-91Crossref Scopus (8) Google Scholar. In addition to binding linear actin, septins associate with Arp2/3-nucleated branched actin filaments. In the axons of sensory neurons, SEPT6 localizes to membrane actin patches, which consist of branched actin filaments, and promotes the recruitment of cortactin, an activator of Arp2/3-mediated actin polymerization37Hu J. Bai X. Bowen J.R. Dolat L. Korobova F. Yu W. Baas P.W. Svitkina T. Gallo G. Spiliotis E.T. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.Curr. Biol. 2012; 22: 1109-1115Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar. In vitro assays indicate that SEPT6 binding to actin filaments and branch points is enhanced in the presence of Arp2/3, while SEPT7 shows no such preference37Hu J. Bai X. Bowen J.R. Dolat L. Korobova F. Yu W. Baas P.W. Svitkina T. Gallo G. Spiliotis E.T. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.Curr. Biol. 2012; 22: 1109-1115Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar. In epithelial cells, SEPT6 overexpression increases the levels of cortactin in lamellipodia, which have also been reported to contain SEPT1, SEPT4 and SEPT5 in the absence of other septin paralogs32Mizutani Y. Ito H. Iwamoto I. Morishita R. Kanoh H. Seishima M. Nagata K. Possible role of a septin, SEPT1, in spreading in squamous cell carcinoma DJM-1 cells.Biol. Chem. 2013; 394: 281-290Crossref PubMed Scopus (32) Google Scholar,37Hu J. Bai X. Bowen J.R. Dolat L. Korobova F. Yu W. Baas P.W. Svitkina T. Gallo G. Spiliotis E.T. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.Curr. Biol. 2012; 22: 1109-1115Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar. These findings suggest that septins may distinguish between actin networks of different organization in a paralog- and complex-specific manner. The actin-binding domains of septins and the underlying mechanism(s) of their interaction with actin are not well understood. The actin-binding sequence of SEPT9 has been narrowed down to its amino-terminal basic domain, which does not appear to contain any known actin-binding motifs36Smith C. Dolat L. Angelis D. Forgacs E. Spiliotis E.T. Galkin V.E. Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity.J. Mol. Biol. 2015; 427: 3273-3284Crossref PubMed Scopus (42) Google Scholar. Of note, SEPT9 has a uniquely long amino-terminal extension that is alternatively spliced, giving rise to a multitude of SEPT9 isoforms with different actin- and microtubule-binding properties33Bai X. Bowen J.R. Knox T.K. Zhou K. Pendziwiat M. Kuhlenbäumer G. Sindelar C.V. Spiliotis E.T. Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules.J. Cell Biol. 2013; 203: 895-905Crossref PubMed Google Scholar,38Verdier-Pinard P. Salaun D. Bouguenina H. Shimada S. Pophillat M. Audebert S. Agavnian E. Coslet S. Charafe-Jauffret E. Tachibana T. Badache A. Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments.Sci. Rep. 2017; 7: 44976Crossref PubMed Scopus (22) Google Scholar,56Connolly D. Yang Z. Castaldi M. Simmons N. Oktay M.H. Coniglio S. Fazzari M.J. Verdier-Pinard P. Montagna C. Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression.Breast Cancer Res. 2011; 13: R76Crossref PubMed Scopus (0) Google Scholar. Electron microscopy studies have shown that the amino-terminal extension of SEPT9 isoform 1 (SEPT9_i1) binds actin using three different modes, two of which involve interactions with actin surface domains that are also bound by the ATP-bound myosin V subfragment 1 and the actin-severing protein cofilin (Figure 3A)36Smith C. Dolat L. Angelis D. Forgacs E. Spiliotis E.T. Galkin V.E. Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity.J. Mol. Biol. 2015; 427: 3273-3284Crossref PubMed Scopus (42) Google Scholar. In contrast to these findings of direct septin–actin binding, septin association with actin is also mediated by anillin50Kinoshita M. Field C.M. Coughlin M.L. Straight A.F. Mitchison T.J. Self- and actin-templated assembly of mammalian septins.Dev. Cell. 2002; 3: 791-802Abstract Full Text Full Text PDF PubMed Scopus (387) Google Scholar, non-muscle myosin II57Joo E. Surka M.C. Trimble W.S. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases.Dev. Cell. 2007; 13: 677-690Abstract Full Text Full Text PDF PubMed Scopus (140) Google Scholar, and effectors of the small GTPases Cdc42 (Cdc42EP/Borg) and Rho (Rhotekin) (Figure 3B)51Calvo F. Ranftl R. Hooper S. Farrugia A.J. Moeendarbary E. Bruckbauer A. Batista F. Charras G. Sahai E. Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts.Cell Rep. 2015; 13: 2699-2714Abstract Full Text Full Text PDF PubMed Google Scholar,58Ito H. Iwamoto I. Morishita R. Nozawa Y. Narumiya S. Asano T. Nagata K. Possible role of Rho/Rhotekin signaling in mammalian septin organization.Oncogene. 2005; 24: 7064-7072Crossref PubMed Scopus (50) Google Scholar, 59Nagata K. Inagaki M. Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin.Oncogene. 2005; 24: 65-76Crossref PubMed Scopus (0) Google Scholar, 60Farrugia A.J. Rodríguez J. Orgaz J.L. Lucas M. Sanz-Moreno V. Calvo F. CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion.J. Cell Biol. 2020; 219e201912159Crossref PubMed Google Scholar. These factors recruit septins to actin or associate with septins and actin synergistically. Thus, septins can control the organization" @default.
- W3164788443 created "2021-06-07" @default.
- W3164788443 creator A5011289582 @default.
- W3164788443 creator A5072433397 @default.
- W3164788443 date "2021-05-01" @default.
- W3164788443 modified "2023-10-17" @default.
- W3164788443 title "Cellular functions of actin- and microtubule-associated septins" @default.
- W3164788443 cites W1146107447 @default.
- W3164788443 cites W1843722816 @default.
- W3164788443 cites W1861708461 @default.
- W3164788443 cites W1893306363 @default.
- W3164788443 cites W1898357466 @default.
- W3164788443 cites W1929262591 @default.
- W3164788443 cites W1965649202 @default.
- W3164788443 cites W1968156411 @default.
- W3164788443 cites W1969651353 @default.
- W3164788443 cites W1973044543 @default.
- W3164788443 cites W1974073543 @default.
- W3164788443 cites W1974503344 @default.
- W3164788443 cites W1975556410 @default.
- W3164788443 cites W1978379992 @default.
- W3164788443 cites W1983408093 @default.
- W3164788443 cites W1985993883 @default.
- W3164788443 cites W1988476536 @default.
- W3164788443 cites W1991237874 @default.
- W3164788443 cites W1991660576 @default.
- W3164788443 cites W1995362265 @default.
- W3164788443 cites W1995807854 @default.
- W3164788443 cites W2003629016 @default.
- W3164788443 cites W2008200554 @default.
- W3164788443 cites W2014190140 @default.
- W3164788443 cites W2014318827 @default.
- W3164788443 cites W2018159649 @default.
- W3164788443 cites W2021535888 @default.
- W3164788443 cites W2025098596 @default.
- W3164788443 cites W2025709302 @default.
- W3164788443 cites W2026364178 @default.
- W3164788443 cites W2028118733 @default.
- W3164788443 cites W2029398124 @default.
- W3164788443 cites W2029508773 @default.
- W3164788443 cites W2029868937 @default.
- W3164788443 cites W2035091329 @default.
- W3164788443 cites W2042895633 @default.
- W3164788443 cites W2046881166 @default.
- W3164788443 cites W2048400182 @default.
- W3164788443 cites W2048929757 @default.
- W3164788443 cites W2051627737 @default.
- W3164788443 cites W2054984177 @default.
- W3164788443 cites W2055376777 @default.
- W3164788443 cites W2059311099 @default.
- W3164788443 cites W2061034298 @default.
- W3164788443 cites W2063549537 @default.
- W3164788443 cites W2066500337 @default.
- W3164788443 cites W2069616555 @default.
- W3164788443 cites W2069871388 @default.
- W3164788443 cites W2072209379 @default.
- W3164788443 cites W2073790083 @default.
- W3164788443 cites W2078116784 @default.
- W3164788443 cites W2085244040 @default.
- W3164788443 cites W2087236354 @default.
- W3164788443 cites W2087678443 @default.
- W3164788443 cites W2088190945 @default.
- W3164788443 cites W2089610893 @default.
- W3164788443 cites W2093325895 @default.
- W3164788443 cites W2099757502 @default.
- W3164788443 cites W2100000002 @default.
- W3164788443 cites W2100218450 @default.
- W3164788443 cites W2101017760 @default.
- W3164788443 cites W2104647032 @default.
- W3164788443 cites W2106667800 @default.
- W3164788443 cites W2111391224 @default.
- W3164788443 cites W2111904037 @default.
- W3164788443 cites W2112597950 @default.
- W3164788443 cites W2113695502 @default.
- W3164788443 cites W2115649406 @default.
- W3164788443 cites W2116379215 @default.
- W3164788443 cites W2117333689 @default.
- W3164788443 cites W2118962346 @default.
- W3164788443 cites W2127839763 @default.
- W3164788443 cites W2129759722 @default.
- W3164788443 cites W2133042202 @default.
- W3164788443 cites W2138118208 @default.
- W3164788443 cites W2139310039 @default.
- W3164788443 cites W2141169141 @default.
- W3164788443 cites W2148146668 @default.
- W3164788443 cites W2148333280 @default.
- W3164788443 cites W2148567371 @default.
- W3164788443 cites W2151332471 @default.
- W3164788443 cites W2152159726 @default.
- W3164788443 cites W2154972880 @default.
- W3164788443 cites W2155813173 @default.
- W3164788443 cites W2159394238 @default.
- W3164788443 cites W2161925614 @default.
- W3164788443 cites W2162785195 @default.
- W3164788443 cites W2164863856 @default.
- W3164788443 cites W2166255678 @default.
- W3164788443 cites W2215895566 @default.
- W3164788443 cites W2217024048 @default.