Matches in SemOpenAlex for { <https://semopenalex.org/work/W3164964973> ?p ?o ?g. }
- W3164964973 endingPage "932" @default.
- W3164964973 startingPage "919" @default.
- W3164964973 abstract "To extract carbon dioxide from the air stream, a venture detergent on a semi-industrial scale was used in this article. The effects of various parameters, such as the inlet air flow to the Venture detergent, the solvent flow, the effect of the form of magnetic field and its strength on the distribution of solvent droplets, the pressure drop in the bottleneck of the Venture detergent, the solvent wastage during the washing process, are presented in this paper. Using aqueous nanofluid solvent/carbon oxide-nanotubes in the presence of surfactants SDS and CTAB, the absorption of carbon dioxide was investigated. The findings of the possible DLS and Zeta experiments have shown that the nanoparticles used in this paper are stable in the vicinity of the surfactant and that their surface charges are sufficient to keep the nanoparticles from binding together in the base fluid. The findings revealed that the ratio of local to moderate flux decreases with increasing the radius of the Venture detergent throat, which means that much of the water in the middle of Venture flows. The results have revealed that the droplet distribution diagram shows that the distribution of solvent droplets can be more uniform by reducing the solvent volume flow, so low flows are ideal for the separation process in the absence of a magnetic field and also The findings also revealed that nanoparticles inserted would almost always improve the efficacy of adsorption relative to the base fluid (along with surfactants). In each nanofluid, the maximum adsorption efficiency appears in a specific weight fraction of the nanoparticles. 1: 3, 1: 1, 3: 1, respectively) in the presence of CTAB surfactant in nanoparticle weight fractions of 0.5, 0.1, 0.05, 0.01 and 0.5%, respectively, and for in the absence of surfactant, the maximum amount of adsorption was observed in weight fractions of 0.5, 0.1, 0.05, 0.01, and 0.5%, increasing the flow rate of carbon dioxide gas to the inlet air from 1:20 to 1:15, the amount of absorption speed increased due to the increase of the driving force of this gas in the gas phase, and also by increasing the flow rate of carbon dioxide gas to the inlet air from 1: 15 to 1:10 The amount of absorption speed decreases due to the reduction of the absorption capacity as well as the increase in the gas remaining in the air stream. For nickel oxide nanoparticles as well as carbon nanotubes, it can be observed that for the case of using a mixture of nickel oxide nanoparticles (25%) and carbon nanotubes (75%) in the presence of CTAB surfactant, the maximum absorption efficiency and mass transfer molar flux Carbon dioxide gas is more than other forms, the main reason can be attributed to the nature of carbon nanotubes as well as nickel oxide nanoparticles. The results also showed that nickel oxide nanoparticles act as agitators which in microscopic dimensions cause the displacement of carbon nanotubes and due to their brown catheter movements cause micron vortices which increase the mass transfer at the surface of liquefied gas. Also, the amount of molar flux and carbon dioxide adsorption efficiency decreases with increasing nanoparticle concentration from a maximum of 5% by mass, the main reason for this decrease can be attributed to the increase in nanofluid viscosity, which increases significantly with increasing nanoparticle concentration." @default.
- W3164964973 created "2021-06-07" @default.
- W3164964973 creator A5031118499 @default.
- W3164964973 creator A5048207123 @default.
- W3164964973 creator A5056112998 @default.
- W3164964973 creator A5064613550 @default.
- W3164964973 date "2021-07-01" @default.
- W3164964973 modified "2023-09-29" @default.
- W3164964973 title "An experimental study of acid gas absorption by method hybrid nanofluid spraying in the presence of continuous and alternating magnetic fields" @default.
- W3164964973 cites W1583581311 @default.
- W3164964973 cites W1592849595 @default.
- W3164964973 cites W1758882435 @default.
- W3164964973 cites W1964058677 @default.
- W3164964973 cites W1974189940 @default.
- W3164964973 cites W1978371221 @default.
- W3164964973 cites W1978817945 @default.
- W3164964973 cites W1982703322 @default.
- W3164964973 cites W1999868023 @default.
- W3164964973 cites W2002266840 @default.
- W3164964973 cites W2005381580 @default.
- W3164964973 cites W2008818316 @default.
- W3164964973 cites W2010673607 @default.
- W3164964973 cites W2011020653 @default.
- W3164964973 cites W2012459362 @default.
- W3164964973 cites W2013238386 @default.
- W3164964973 cites W2013383639 @default.
- W3164964973 cites W2055990181 @default.
- W3164964973 cites W2058376352 @default.
- W3164964973 cites W2066830684 @default.
- W3164964973 cites W2081210610 @default.
- W3164964973 cites W2083546207 @default.
- W3164964973 cites W2145669662 @default.
- W3164964973 cites W2146257553 @default.
- W3164964973 cites W2158443801 @default.
- W3164964973 cites W2168175046 @default.
- W3164964973 cites W2170797011 @default.
- W3164964973 cites W2213782059 @default.
- W3164964973 cites W2232748179 @default.
- W3164964973 cites W2329625137 @default.
- W3164964973 cites W2522250379 @default.
- W3164964973 cites W2531334171 @default.
- W3164964973 cites W2553693698 @default.
- W3164964973 cites W2559889254 @default.
- W3164964973 cites W2567464684 @default.
- W3164964973 cites W2592990661 @default.
- W3164964973 cites W2613771876 @default.
- W3164964973 cites W2619127601 @default.
- W3164964973 cites W2711636288 @default.
- W3164964973 cites W2740928349 @default.
- W3164964973 cites W2747273960 @default.
- W3164964973 cites W2748215144 @default.
- W3164964973 cites W2765169965 @default.
- W3164964973 cites W2767208347 @default.
- W3164964973 cites W2804074485 @default.
- W3164964973 cites W2896538840 @default.
- W3164964973 cites W2901864827 @default.
- W3164964973 cites W2905166256 @default.
- W3164964973 cites W2906102779 @default.
- W3164964973 cites W2936227260 @default.
- W3164964973 cites W2944042107 @default.
- W3164964973 cites W2946879313 @default.
- W3164964973 cites W2960871125 @default.
- W3164964973 cites W2963399569 @default.
- W3164964973 cites W2970901644 @default.
- W3164964973 cites W2980995206 @default.
- W3164964973 cites W2990991805 @default.
- W3164964973 cites W3005588337 @default.
- W3164964973 cites W3011149988 @default.
- W3164964973 cites W3015353830 @default.
- W3164964973 cites W3016405547 @default.
- W3164964973 cites W3033003249 @default.
- W3164964973 cites W3034799776 @default.
- W3164964973 cites W3038608598 @default.
- W3164964973 cites W3045444757 @default.
- W3164964973 cites W3083004765 @default.
- W3164964973 cites W3084078778 @default.
- W3164964973 cites W3084311374 @default.
- W3164964973 cites W3084896532 @default.
- W3164964973 cites W3093936478 @default.
- W3164964973 cites W3094536368 @default.
- W3164964973 cites W3108785343 @default.
- W3164964973 cites W3108807519 @default.
- W3164964973 cites W3116276900 @default.
- W3164964973 cites W3116800788 @default.
- W3164964973 cites W3146679489 @default.
- W3164964973 doi "https://doi.org/10.1016/j.jmrt.2021.05.013" @default.
- W3164964973 hasPublicationYear "2021" @default.
- W3164964973 type Work @default.
- W3164964973 sameAs 3164964973 @default.
- W3164964973 citedByCount "3" @default.
- W3164964973 countsByYear W31649649732021 @default.
- W3164964973 countsByYear W31649649732022 @default.
- W3164964973 crossrefType "journal-article" @default.
- W3164964973 hasAuthorship W3164964973A5031118499 @default.
- W3164964973 hasAuthorship W3164964973A5048207123 @default.
- W3164964973 hasAuthorship W3164964973A5056112998 @default.
- W3164964973 hasAuthorship W3164964973A5064613550 @default.
- W3164964973 hasBestOaLocation W31649649731 @default.