Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165073121> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3165073121 abstract "Achieving early detection and classification of thyroid nodules contributes to the prediction of cancer burdening and also steers appropriate clinical pathways of that medical condition. We propose a novel multimodal MRI-based computer-aided diagnosis (CAD) system that detects cancerous thyroid nodules using a deep-learning architecture. Particularly, our system is built with a multi-input convolutional neural network (CNN) to perform fusion of two MRI modalities: the diffusion weighted image (DWI) and apparent diffusion coefficient (ADC) map. The main contribution of our system is three-folded. Namely, (1) it is the first system to fuse thyroid DWI and ADC using CNN for classification purpose; (2) it enables independent convolutions process for each of DWI and ADC images, which can increase the likelihood of detecting deep texture patterns in thyroid nodules; and (3) it enables adding extra channels in each input with the possibility to integrate with additional MRI modalities and other imaging technologies. We compared our system to other fusion methods and also to other machine learning (ML) frameworks that use hand-crafted features. Our system achieved the highest performance among them with diagnostic accuracy of 0.88, precision of 0.82, and recall of 0.82." @default.
- W3165073121 created "2021-06-07" @default.
- W3165073121 creator A5000128668 @default.
- W3165073121 creator A5003428654 @default.
- W3165073121 creator A5022870924 @default.
- W3165073121 creator A5033686290 @default.
- W3165073121 creator A5076205185 @default.
- W3165073121 date "2021-04-13" @default.
- W3165073121 modified "2023-10-14" @default.
- W3165073121 title "Thyroid Cancer Computer-Aided Diagnosis System using MRI-Based Multi-Input CNN Model" @default.
- W3165073121 cites W1596717185 @default.
- W3165073121 cites W1608391071 @default.
- W3165073121 cites W2035549557 @default.
- W3165073121 cites W2084761689 @default.
- W3165073121 cites W2145150141 @default.
- W3165073121 cites W2271131504 @default.
- W3165073121 cites W2409310461 @default.
- W3165073121 cites W2606623548 @default.
- W3165073121 cites W2751673309 @default.
- W3165073121 cites W2788538718 @default.
- W3165073121 cites W2807482973 @default.
- W3165073121 cites W2886657857 @default.
- W3165073121 cites W2917748145 @default.
- W3165073121 cites W2941657542 @default.
- W3165073121 cites W2991642257 @default.
- W3165073121 cites W3012441747 @default.
- W3165073121 cites W3092554344 @default.
- W3165073121 doi "https://doi.org/10.1109/isbi48211.2021.9433841" @default.
- W3165073121 hasPublicationYear "2021" @default.
- W3165073121 type Work @default.
- W3165073121 sameAs 3165073121 @default.
- W3165073121 citedByCount "9" @default.
- W3165073121 countsByYear W31650731212022 @default.
- W3165073121 countsByYear W31650731212023 @default.
- W3165073121 crossrefType "proceedings-article" @default.
- W3165073121 hasAuthorship W3165073121A5000128668 @default.
- W3165073121 hasAuthorship W3165073121A5003428654 @default.
- W3165073121 hasAuthorship W3165073121A5022870924 @default.
- W3165073121 hasAuthorship W3165073121A5033686290 @default.
- W3165073121 hasAuthorship W3165073121A5076205185 @default.
- W3165073121 hasConcept C121608353 @default.
- W3165073121 hasConcept C126322002 @default.
- W3165073121 hasConcept C154945302 @default.
- W3165073121 hasConcept C2779761222 @default.
- W3165073121 hasConcept C41008148 @default.
- W3165073121 hasConcept C71924100 @default.
- W3165073121 hasConceptScore W3165073121C121608353 @default.
- W3165073121 hasConceptScore W3165073121C126322002 @default.
- W3165073121 hasConceptScore W3165073121C154945302 @default.
- W3165073121 hasConceptScore W3165073121C2779761222 @default.
- W3165073121 hasConceptScore W3165073121C41008148 @default.
- W3165073121 hasConceptScore W3165073121C71924100 @default.
- W3165073121 hasLocation W31650731211 @default.
- W3165073121 hasOpenAccess W3165073121 @default.
- W3165073121 hasPrimaryLocation W31650731211 @default.
- W3165073121 hasRelatedWork W1981750685 @default.
- W3165073121 hasRelatedWork W2017196587 @default.
- W3165073121 hasRelatedWork W2111920996 @default.
- W3165073121 hasRelatedWork W2222545680 @default.
- W3165073121 hasRelatedWork W2369149653 @default.
- W3165073121 hasRelatedWork W3048757085 @default.
- W3165073121 hasRelatedWork W3107474891 @default.
- W3165073121 hasRelatedWork W3152145933 @default.
- W3165073121 hasRelatedWork W4232835874 @default.
- W3165073121 hasRelatedWork W50598398 @default.
- W3165073121 isParatext "false" @default.
- W3165073121 isRetracted "false" @default.
- W3165073121 magId "3165073121" @default.
- W3165073121 workType "article" @default.