Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165080648> ?p ?o ?g. }
- W3165080648 endingPage "102641" @default.
- W3165080648 startingPage "102641" @default.
- W3165080648 abstract "Fine-grained sentiment analysis has shown great benefits to real-word applications, such as for social media texts and product reviews. While the current state-of-the-art methods employ external syntactic dependency knowledge and enhance the task performances, most of them make use of merely the dependency edges, leaving the dependency labels unexploited, which the work presented here shows to be also of great helpfulness to the task. In this study we leverage these syntactic features for improving fine-grained sentiment analysis. Compared to previous studies, our method advances following aspects. First, we are the first to propose a novel label-wise syntax memory (LSM) network for simultaneously encoding both the syntactic dependency edges and labels information in a unified manner. Additionally, we take the advantage of the current state-of-the-art contextualized BERT language models to provide rich contexts towards the targeted aspects. We conduct experiments on five benchmark datasets, and the results demonstrate that our model outperforms current best-performing baselines, and achieves new state-of-the-art performances. Further analysis is conducted, proving the necessity to encode sufficient syntactic dependency knowledge for the task, also illustrating the effectiveness of our LSM encoder on modeling these syntax attributes. By exploiting rich syntactic information, our framework outperforms baselines in identifying multiple aspects of sentiment analysis as well as the long-range dependency issues." @default.
- W3165080648 created "2021-06-07" @default.
- W3165080648 creator A5024082171 @default.
- W3165080648 creator A5037714450 @default.
- W3165080648 creator A5054623255 @default.
- W3165080648 creator A5062987450 @default.
- W3165080648 creator A5076201144 @default.
- W3165080648 date "2021-09-01" @default.
- W3165080648 modified "2023-09-29" @default.
- W3165080648 title "Modeling label-wise syntax for fine-grained sentiment analysis of reviews via memory-based neural model" @default.
- W3165080648 cites W1579917587 @default.
- W3165080648 cites W1832693441 @default.
- W3165080648 cites W1995068038 @default.
- W3165080648 cites W2022204871 @default.
- W3165080648 cites W2062913298 @default.
- W3165080648 cites W2064230935 @default.
- W3165080648 cites W2064675550 @default.
- W3165080648 cites W2131932672 @default.
- W3165080648 cites W2251124635 @default.
- W3165080648 cites W2251648804 @default.
- W3165080648 cites W2251792193 @default.
- W3165080648 cites W2473593971 @default.
- W3165080648 cites W2514299353 @default.
- W3165080648 cites W2515197428 @default.
- W3165080648 cites W2562607067 @default.
- W3165080648 cites W2593762897 @default.
- W3165080648 cites W2594056497 @default.
- W3165080648 cites W2787956672 @default.
- W3165080648 cites W2788810909 @default.
- W3165080648 cites W2791248998 @default.
- W3165080648 cites W2891778157 @default.
- W3165080648 cites W2892094955 @default.
- W3165080648 cites W2914820290 @default.
- W3165080648 cites W2923528470 @default.
- W3165080648 cites W2944502595 @default.
- W3165080648 cites W2950404230 @default.
- W3165080648 cites W2952280064 @default.
- W3165080648 cites W2962843214 @default.
- W3165080648 cites W2963168371 @default.
- W3165080648 cites W2963240575 @default.
- W3165080648 cites W2963909901 @default.
- W3165080648 cites W2964098749 @default.
- W3165080648 cites W2964164368 @default.
- W3165080648 cites W2970583420 @default.
- W3165080648 cites W2970748008 @default.
- W3165080648 cites W2971220558 @default.
- W3165080648 cites W2977233821 @default.
- W3165080648 cites W2977700998 @default.
- W3165080648 cites W2977943755 @default.
- W3165080648 cites W2979860911 @default.
- W3165080648 cites W2997087088 @default.
- W3165080648 cites W3035380217 @default.
- W3165080648 cites W3035740499 @default.
- W3165080648 cites W3099409556 @default.
- W3165080648 cites W3099766420 @default.
- W3165080648 cites W3102537153 @default.
- W3165080648 cites W4205184193 @default.
- W3165080648 doi "https://doi.org/10.1016/j.ipm.2021.102641" @default.
- W3165080648 hasPublicationYear "2021" @default.
- W3165080648 type Work @default.
- W3165080648 sameAs 3165080648 @default.
- W3165080648 citedByCount "13" @default.
- W3165080648 countsByYear W31650806482022 @default.
- W3165080648 countsByYear W31650806482023 @default.
- W3165080648 crossrefType "journal-article" @default.
- W3165080648 hasAuthorship W3165080648A5024082171 @default.
- W3165080648 hasAuthorship W3165080648A5037714450 @default.
- W3165080648 hasAuthorship W3165080648A5054623255 @default.
- W3165080648 hasAuthorship W3165080648A5062987450 @default.
- W3165080648 hasAuthorship W3165080648A5076201144 @default.
- W3165080648 hasConcept C154945302 @default.
- W3165080648 hasConcept C204321447 @default.
- W3165080648 hasConcept C41008148 @default.
- W3165080648 hasConcept C50644808 @default.
- W3165080648 hasConcept C60048249 @default.
- W3165080648 hasConcept C66402592 @default.
- W3165080648 hasConceptScore W3165080648C154945302 @default.
- W3165080648 hasConceptScore W3165080648C204321447 @default.
- W3165080648 hasConceptScore W3165080648C41008148 @default.
- W3165080648 hasConceptScore W3165080648C50644808 @default.
- W3165080648 hasConceptScore W3165080648C60048249 @default.
- W3165080648 hasConceptScore W3165080648C66402592 @default.
- W3165080648 hasFunder F4320321106 @default.
- W3165080648 hasFunder F4320324116 @default.
- W3165080648 hasFunder F4320335787 @default.
- W3165080648 hasIssue "5" @default.
- W3165080648 hasLocation W31650806481 @default.
- W3165080648 hasOpenAccess W3165080648 @default.
- W3165080648 hasPrimaryLocation W31650806481 @default.
- W3165080648 hasRelatedWork W2024691726 @default.
- W3165080648 hasRelatedWork W2326619756 @default.
- W3165080648 hasRelatedWork W2386387936 @default.
- W3165080648 hasRelatedWork W2567514149 @default.
- W3165080648 hasRelatedWork W2789919619 @default.
- W3165080648 hasRelatedWork W2909085234 @default.
- W3165080648 hasRelatedWork W2944636446 @default.
- W3165080648 hasRelatedWork W3080191145 @default.
- W3165080648 hasRelatedWork W3153487575 @default.