Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165087808> ?p ?o ?g. }
- W3165087808 endingPage "13" @default.
- W3165087808 startingPage "1" @default.
- W3165087808 abstract "Hyperspectral (HS) image fusion aims at integrating a panchromatic (PAN) image and an HS image, featuring the fused image with the spatial quality of the former and the spectral diversity of the latter. The classic fusion algorithm generally includes three consecutive procedures that are upsampling, detail extraction, and detail injection. In this article, we propose an HS and PAN image fusion method based on generative adversarial network and local estimation of injection gain. Instead of upsampling the HS image by classical interpolation techniques, a generative adversarial super-resolution network (GASN) is designed to obtain the interpolated HS image in the fusion framework. GASN establishes a spectral-information-based discriminator to conduct adversarial learning with the generator, so as to preserve the spectral information of the low-resolution HS image. An image segmentation-based injection gain estimation (ISGE) algorithm is subsequently proposed for HS and PAN images fusion. The injection gain is estimated over image segments obtained by a binary partition tree approach to improve the fusion performance. The proposed GASN and ISGE are implemented into two credible global estimation pansharpening methods, and experimental results prove the performance improvement of the proposed method. The proposed method is also compared with existing state-of-the-art methods, and experiments on several public databases demonstrate that the proposed method is competitive or superior to the state-of-the-art fusion methods." @default.
- W3165087808 created "2021-06-07" @default.
- W3165087808 creator A5028464253 @default.
- W3165087808 creator A5044736869 @default.
- W3165087808 creator A5045803591 @default.
- W3165087808 creator A5052163069 @default.
- W3165087808 creator A5067798266 @default.
- W3165087808 date "2022-01-01" @default.
- W3165087808 modified "2023-10-16" @default.
- W3165087808 title "Fusion of Hyperspectral and Panchromatic Images Using Generative Adversarial Network and Image Segmentation" @default.
- W3165087808 cites W1799163428 @default.
- W3165087808 cites W1885185971 @default.
- W3165087808 cites W1990231296 @default.
- W3165087808 cites W2001800591 @default.
- W3165087808 cites W2021046129 @default.
- W3165087808 cites W2022075948 @default.
- W3165087808 cites W2078855750 @default.
- W3165087808 cites W2088538848 @default.
- W3165087808 cites W2124743705 @default.
- W3165087808 cites W2144436897 @default.
- W3165087808 cites W2146037576 @default.
- W3165087808 cites W2147469781 @default.
- W3165087808 cites W2171108951 @default.
- W3165087808 cites W2476548250 @default.
- W3165087808 cites W2503339013 @default.
- W3165087808 cites W2611655888 @default.
- W3165087808 cites W2619662254 @default.
- W3165087808 cites W2752716059 @default.
- W3165087808 cites W2767224066 @default.
- W3165087808 cites W2793117763 @default.
- W3165087808 cites W2804744787 @default.
- W3165087808 cites W2910457605 @default.
- W3165087808 cites W2940678725 @default.
- W3165087808 cites W2963442801 @default.
- W3165087808 cites W2981642654 @default.
- W3165087808 cites W3003844174 @default.
- W3165087808 cites W3016106731 @default.
- W3165087808 cites W3023991509 @default.
- W3165087808 cites W3040662573 @default.
- W3165087808 cites W3088339669 @default.
- W3165087808 cites W3099843321 @default.
- W3165087808 cites W3120331810 @default.
- W3165087808 doi "https://doi.org/10.1109/tgrs.2021.3078711" @default.
- W3165087808 hasPublicationYear "2022" @default.
- W3165087808 type Work @default.
- W3165087808 sameAs 3165087808 @default.
- W3165087808 citedByCount "9" @default.
- W3165087808 countsByYear W31650878082021 @default.
- W3165087808 countsByYear W31650878082022 @default.
- W3165087808 countsByYear W31650878082023 @default.
- W3165087808 crossrefType "journal-article" @default.
- W3165087808 hasAuthorship W3165087808A5028464253 @default.
- W3165087808 hasAuthorship W3165087808A5044736869 @default.
- W3165087808 hasAuthorship W3165087808A5045803591 @default.
- W3165087808 hasAuthorship W3165087808A5052163069 @default.
- W3165087808 hasAuthorship W3165087808A5067798266 @default.
- W3165087808 hasConcept C107445234 @default.
- W3165087808 hasConcept C110384440 @default.
- W3165087808 hasConcept C115961682 @default.
- W3165087808 hasConcept C153180895 @default.
- W3165087808 hasConcept C154945302 @default.
- W3165087808 hasConcept C159078339 @default.
- W3165087808 hasConcept C205372480 @default.
- W3165087808 hasConcept C31972630 @default.
- W3165087808 hasConcept C41008148 @default.
- W3165087808 hasConcept C69744172 @default.
- W3165087808 hasConceptScore W3165087808C107445234 @default.
- W3165087808 hasConceptScore W3165087808C110384440 @default.
- W3165087808 hasConceptScore W3165087808C115961682 @default.
- W3165087808 hasConceptScore W3165087808C153180895 @default.
- W3165087808 hasConceptScore W3165087808C154945302 @default.
- W3165087808 hasConceptScore W3165087808C159078339 @default.
- W3165087808 hasConceptScore W3165087808C205372480 @default.
- W3165087808 hasConceptScore W3165087808C31972630 @default.
- W3165087808 hasConceptScore W3165087808C41008148 @default.
- W3165087808 hasConceptScore W3165087808C69744172 @default.
- W3165087808 hasFunder F4320321001 @default.
- W3165087808 hasFunder F4320327912 @default.
- W3165087808 hasFunder F4320335787 @default.
- W3165087808 hasFunder F4320336605 @default.
- W3165087808 hasFunder F4320337111 @default.
- W3165087808 hasLocation W31650878081 @default.
- W3165087808 hasOpenAccess W3165087808 @default.
- W3165087808 hasPrimaryLocation W31650878081 @default.
- W3165087808 hasRelatedWork W1515213874 @default.
- W3165087808 hasRelatedWork W1920248547 @default.
- W3165087808 hasRelatedWork W1973544361 @default.
- W3165087808 hasRelatedWork W2124768888 @default.
- W3165087808 hasRelatedWork W2321840236 @default.
- W3165087808 hasRelatedWork W2597577638 @default.
- W3165087808 hasRelatedWork W2766312395 @default.
- W3165087808 hasRelatedWork W2766873919 @default.
- W3165087808 hasRelatedWork W3187789630 @default.
- W3165087808 hasRelatedWork W4210492871 @default.
- W3165087808 hasVolume "60" @default.
- W3165087808 isParatext "false" @default.
- W3165087808 isRetracted "false" @default.
- W3165087808 magId "3165087808" @default.