Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165097382> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3165097382 abstract "This paper presents a fundamental algorithm, called VDB-EDT, for Euclidean distance transform (EDT) based on the VDB data structure. The algorithm executes on grid maps and generates the corresponding distance field for recording distance information against obstacles, which forms the basis of numerous motion planning algorithms. The contributions of this work mainly lie in three folds. Firstly, we propose a novel algorithm that can facilitate distance transform procedures by optimizing the scheduling priorities of transform functions, which significantly improves the running speed of conventional EDT algorithms. Secondly, we for the first time introduce the memory-efficient VDB data structure, a customed B+ tree, to represent the distance field hierarchically. Benefiting from the special index and caching mechanism, VDB shows a fast (average textit{O}(1)) random access speed, and thus is very suitable for the frequent neighbor-searching operations in EDT. Moreover, regarding the small scale of existing datasets, we release a large-scale dataset captured from subterranean environments to benchmark EDT algorithms. Extensive experiments on the released dataset and publicly available datasets show that VDB-EDT can reduce memory consumption by about 30%-85%, depending on the sparsity of the environment, while maintaining a competitive running speed with the fastest array-based implementation. The experiments also show that VDB-EDT can significantly outperform the state-of-the-art EDT algorithm in both runtime and memory efficiency, which strongly demonstrates the advantages of our proposed method. The released dataset and source code are available on https://github.com/zhudelong/VDB-EDT." @default.
- W3165097382 created "2021-06-07" @default.
- W3165097382 creator A5008549662 @default.
- W3165097382 creator A5032584934 @default.
- W3165097382 creator A5034678137 @default.
- W3165097382 creator A5037554077 @default.
- W3165097382 creator A5072234330 @default.
- W3165097382 creator A5073511720 @default.
- W3165097382 date "2021-05-10" @default.
- W3165097382 modified "2023-09-23" @default.
- W3165097382 title "VDB-EDT: An Efficient Euclidean Distance Transform Algorithm Based on VDB Data Structure" @default.
- W3165097382 cites W1685331108 @default.
- W3165097382 cites W1978301848 @default.
- W3165097382 cites W1979184258 @default.
- W3165097382 cites W2023148409 @default.
- W3165097382 cites W2029315739 @default.
- W3165097382 cites W2071906076 @default.
- W3165097382 cites W2089950862 @default.
- W3165097382 cites W2108392990 @default.
- W3165097382 cites W2114652533 @default.
- W3165097382 cites W2133844819 @default.
- W3165097382 cites W2161819990 @default.
- W3165097382 cites W2564322318 @default.
- W3165097382 cites W2596152647 @default.
- W3165097382 cites W2784112303 @default.
- W3165097382 cites W2889063840 @default.
- W3165097382 cites W2891234582 @default.
- W3165097382 cites W2901608006 @default.
- W3165097382 cites W2949138173 @default.
- W3165097382 cites W3002978252 @default.
- W3165097382 cites W3004227484 @default.
- W3165097382 cites W3102129812 @default.
- W3165097382 doi "https://doi.org/10.48550/arxiv.2105.04419" @default.
- W3165097382 hasPublicationYear "2021" @default.
- W3165097382 type Work @default.
- W3165097382 sameAs 3165097382 @default.
- W3165097382 citedByCount "0" @default.
- W3165097382 crossrefType "posted-content" @default.
- W3165097382 hasAuthorship W3165097382A5008549662 @default.
- W3165097382 hasAuthorship W3165097382A5032584934 @default.
- W3165097382 hasAuthorship W3165097382A5034678137 @default.
- W3165097382 hasAuthorship W3165097382A5037554077 @default.
- W3165097382 hasAuthorship W3165097382A5072234330 @default.
- W3165097382 hasAuthorship W3165097382A5073511720 @default.
- W3165097382 hasBestOaLocation W31650973821 @default.
- W3165097382 hasConcept C11413529 @default.
- W3165097382 hasConcept C120174047 @default.
- W3165097382 hasConcept C13280743 @default.
- W3165097382 hasConcept C154945302 @default.
- W3165097382 hasConcept C185798385 @default.
- W3165097382 hasConcept C205649164 @default.
- W3165097382 hasConcept C41008148 @default.
- W3165097382 hasConceptScore W3165097382C11413529 @default.
- W3165097382 hasConceptScore W3165097382C120174047 @default.
- W3165097382 hasConceptScore W3165097382C13280743 @default.
- W3165097382 hasConceptScore W3165097382C154945302 @default.
- W3165097382 hasConceptScore W3165097382C185798385 @default.
- W3165097382 hasConceptScore W3165097382C205649164 @default.
- W3165097382 hasConceptScore W3165097382C41008148 @default.
- W3165097382 hasLocation W31650973821 @default.
- W3165097382 hasOpenAccess W3165097382 @default.
- W3165097382 hasPrimaryLocation W31650973821 @default.
- W3165097382 hasRelatedWork W112744582 @default.
- W3165097382 hasRelatedWork W1485630101 @default.
- W3165097382 hasRelatedWork W1490303524 @default.
- W3165097382 hasRelatedWork W1677601786 @default.
- W3165097382 hasRelatedWork W172869079 @default.
- W3165097382 hasRelatedWork W1986478578 @default.
- W3165097382 hasRelatedWork W2030059621 @default.
- W3165097382 hasRelatedWork W2498017833 @default.
- W3165097382 hasRelatedWork W2748952813 @default.
- W3165097382 hasRelatedWork W3084863322 @default.
- W3165097382 isParatext "false" @default.
- W3165097382 isRetracted "false" @default.
- W3165097382 magId "3165097382" @default.
- W3165097382 workType "article" @default.