Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165111305> ?p ?o ?g. }
- W3165111305 endingPage "1572" @default.
- W3165111305 startingPage "1556" @default.
- W3165111305 abstract "The present work investigates the application of Machine Learning and Artificial Neural Networks for tackling the complex issue of transcritical sprays, which are relevant to modern compression-ignition engines. Such conditions imply the departure of the classical thermodynamic perspective of ideal gas or incompressible liquid, necessitating the use of costly and elaborate thermodynamic closures to describe property variation and simulation methods. Machine Learning can assist in several ways in speeding up such calculations, either as a compact, trained thermodynamic model that can be coupled to the flow solver, or as a surrogate predictive tool of spray characteristics. In this work, such applications are demonstrated and their performance is assessed against more traditional approaches. Such applications involve the prediction of macroscopic spray characteristics, for example, the spray penetration over time, or the spray distribution in space and time, and predictions of fluid properties for the thermodynamic states encountered in such applications. Macroscopic characteristics can be adequately predicted by relatively simple network structures, involving just a hidden layer of 3–4 neurons, whereas prediction of thermodynamic states requires several layers of 5–20 neurons each. The results of integrating Artificial Neural Networks in transcritical sprays are rather promising; prediction of thermodynamic properties at pressures greater than 1bar has effectively zero error, yielding simulations indistinguishable from standard tabulated approaches with minimal overhead. When used as a regression method for time-histories either of spray characteristics or spray distributions, the results are within experimental uncertainty of similar experiments, not included in the training dataset." @default.
- W3165111305 created "2021-06-07" @default.
- W3165111305 creator A5003122103 @default.
- W3165111305 creator A5004019979 @default.
- W3165111305 creator A5010697127 @default.
- W3165111305 creator A5015670271 @default.
- W3165111305 creator A5038483226 @default.
- W3165111305 creator A5071830065 @default.
- W3165111305 date "2021-05-25" @default.
- W3165111305 modified "2023-10-17" @default.
- W3165111305 title "Machine Learning and transcritical sprays: A demonstration study of their potential in ECN Spray-A" @default.
- W3165111305 cites W1986599790 @default.
- W3165111305 cites W1991906323 @default.
- W3165111305 cites W1997371377 @default.
- W3165111305 cites W2000340589 @default.
- W3165111305 cites W2002895923 @default.
- W3165111305 cites W2057281550 @default.
- W3165111305 cites W2071876135 @default.
- W3165111305 cites W2078550760 @default.
- W3165111305 cites W2085237940 @default.
- W3165111305 cites W2091286198 @default.
- W3165111305 cites W2111051539 @default.
- W3165111305 cites W2127695722 @default.
- W3165111305 cites W2289400796 @default.
- W3165111305 cites W2292469596 @default.
- W3165111305 cites W2317931692 @default.
- W3165111305 cites W2535818069 @default.
- W3165111305 cites W2592739405 @default.
- W3165111305 cites W2597680147 @default.
- W3165111305 cites W2605533435 @default.
- W3165111305 cites W2767325365 @default.
- W3165111305 cites W2793402918 @default.
- W3165111305 cites W2803213340 @default.
- W3165111305 cites W2893450589 @default.
- W3165111305 cites W2897069287 @default.
- W3165111305 cites W2901312569 @default.
- W3165111305 cites W2913009752 @default.
- W3165111305 cites W2913832710 @default.
- W3165111305 cites W2938109457 @default.
- W3165111305 cites W2946771678 @default.
- W3165111305 cites W2946866751 @default.
- W3165111305 cites W2972154454 @default.
- W3165111305 cites W2972202074 @default.
- W3165111305 cites W2973583430 @default.
- W3165111305 cites W2975038609 @default.
- W3165111305 cites W3003779287 @default.
- W3165111305 cites W3019156468 @default.
- W3165111305 cites W3022728717 @default.
- W3165111305 cites W3026805303 @default.
- W3165111305 cites W3041185500 @default.
- W3165111305 cites W3092049271 @default.
- W3165111305 cites W3102140816 @default.
- W3165111305 cites W3113084589 @default.
- W3165111305 cites W3123883114 @default.
- W3165111305 cites W4241363768 @default.
- W3165111305 doi "https://doi.org/10.1177/14680874211020292" @default.
- W3165111305 hasPublicationYear "2021" @default.
- W3165111305 type Work @default.
- W3165111305 sameAs 3165111305 @default.
- W3165111305 citedByCount "11" @default.
- W3165111305 countsByYear W31651113052021 @default.
- W3165111305 countsByYear W31651113052022 @default.
- W3165111305 countsByYear W31651113052023 @default.
- W3165111305 crossrefType "journal-article" @default.
- W3165111305 hasAuthorship W3165111305A5003122103 @default.
- W3165111305 hasAuthorship W3165111305A5004019979 @default.
- W3165111305 hasAuthorship W3165111305A5010697127 @default.
- W3165111305 hasAuthorship W3165111305A5015670271 @default.
- W3165111305 hasAuthorship W3165111305A5038483226 @default.
- W3165111305 hasAuthorship W3165111305A5071830065 @default.
- W3165111305 hasBestOaLocation W31651113051 @default.
- W3165111305 hasConcept C119857082 @default.
- W3165111305 hasConcept C121332964 @default.
- W3165111305 hasConcept C121864883 @default.
- W3165111305 hasConcept C154945302 @default.
- W3165111305 hasConcept C41008148 @default.
- W3165111305 hasConcept C50644808 @default.
- W3165111305 hasConceptScore W3165111305C119857082 @default.
- W3165111305 hasConceptScore W3165111305C121332964 @default.
- W3165111305 hasConceptScore W3165111305C121864883 @default.
- W3165111305 hasConceptScore W3165111305C154945302 @default.
- W3165111305 hasConceptScore W3165111305C41008148 @default.
- W3165111305 hasConceptScore W3165111305C50644808 @default.
- W3165111305 hasFunder F4320338337 @default.
- W3165111305 hasIssue "9" @default.
- W3165111305 hasLocation W31651113051 @default.
- W3165111305 hasLocation W31651113052 @default.
- W3165111305 hasOpenAccess W3165111305 @default.
- W3165111305 hasPrimaryLocation W31651113051 @default.
- W3165111305 hasRelatedWork W2386387936 @default.
- W3165111305 hasRelatedWork W2961085424 @default.
- W3165111305 hasRelatedWork W3046775127 @default.
- W3165111305 hasRelatedWork W3170094116 @default.
- W3165111305 hasRelatedWork W4205958290 @default.
- W3165111305 hasRelatedWork W4285260836 @default.
- W3165111305 hasRelatedWork W4286629047 @default.
- W3165111305 hasRelatedWork W4306321456 @default.
- W3165111305 hasRelatedWork W4306674287 @default.