Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165162080> ?p ?o ?g. }
- W3165162080 abstract "When summarizing a Bayesian analysis, it is important to quantify the contribution of the prior distribution to the final posterior inference because this informs other researchers whether the prior information needs to be carefully scrutinized, and whether alternative priors are likely to substantially alter the conclusions drawn. One appealing and interpretable way to do this is to report an effective prior sample size (EPSS), which captures how many observations the information in the prior distribution corresponds to. However, typically the most important aspect of the prior distribution is its location relative to the data, and therefore traditional information measures are somewhat deficit for the purpose of quantifying EPSS, because they concentrate on the variance or spread of the prior distribution (in isolation from the data). To partially address this difficulty, Reimherr et al. (2014) introduced a class of EPSS measures based on prior-likelihood discordance. In this paper, we take this idea further by proposing a new measure of EPSS that not only incorporates the general mathematical form of the likelihood (as proposed by Reimherr et al., 2014) but also the specific data at hand. Thus, our measure considers the location of the prior relative to the current observed data, rather than relative to the average of multiple datasets from the working model, the latter being the approach taken by Reimherr et al. (2014). Consequently, our measure can be highly variable, but we demonstrate that this is because the impact of a prior on a Bayesian analysis can intrinsically be highly variable. Our measure is called the (posterior) mean Observed Prior Effective Sample Size (mOPESS), and is a Bayes estimate of a meaningful quantity. The mOPESS well communicates the extent to which inference is determined by the prior, or framed differently, the amount of sampling effort saved due to having relevant prior information. We illustrate our ideas through a number of examples including Gaussian conjugate and non-conjugate models (continuous observations), a Beta-Binomial model (discrete observations), and a linear regression model (two unknown parameters)." @default.
- W3165162080 created "2021-06-07" @default.
- W3165162080 creator A5074190785 @default.
- W3165162080 creator A5074323481 @default.
- W3165162080 creator A5090007858 @default.
- W3165162080 date "2022-09-01" @default.
- W3165162080 modified "2023-10-17" @default.
- W3165162080 title "Quantifying Observed Prior Impact" @default.
- W3165162080 cites W1460189015 @default.
- W3165162080 cites W152055444 @default.
- W3165162080 cites W1630188621 @default.
- W3165162080 cites W1844985714 @default.
- W3165162080 cites W1969946313 @default.
- W3165162080 cites W1980501503 @default.
- W3165162080 cites W1984491120 @default.
- W3165162080 cites W2031523887 @default.
- W3165162080 cites W2035460524 @default.
- W3165162080 cites W2036136173 @default.
- W3165162080 cites W2041098432 @default.
- W3165162080 cites W2044147389 @default.
- W3165162080 cites W2047733505 @default.
- W3165162080 cites W2048523641 @default.
- W3165162080 cites W2050192973 @default.
- W3165162080 cites W2057829568 @default.
- W3165162080 cites W2064053411 @default.
- W3165162080 cites W2067316154 @default.
- W3165162080 cites W2067342226 @default.
- W3165162080 cites W2081236418 @default.
- W3165162080 cites W2139606141 @default.
- W3165162080 cites W2149940508 @default.
- W3165162080 cites W2159666858 @default.
- W3165162080 cites W2410521174 @default.
- W3165162080 cites W2518143623 @default.
- W3165162080 cites W2798087041 @default.
- W3165162080 cites W2963171485 @default.
- W3165162080 cites W2964089350 @default.
- W3165162080 cites W2965956128 @default.
- W3165162080 cites W2989308447 @default.
- W3165162080 cites W3010310181 @default.
- W3165162080 cites W3013474403 @default.
- W3165162080 cites W3033625110 @default.
- W3165162080 cites W3103924647 @default.
- W3165162080 cites W4248681815 @default.
- W3165162080 cites W4256117418 @default.
- W3165162080 cites W621546036 @default.
- W3165162080 doi "https://doi.org/10.1214/21-ba1271" @default.
- W3165162080 hasPublicationYear "2022" @default.
- W3165162080 type Work @default.
- W3165162080 sameAs 3165162080 @default.
- W3165162080 citedByCount "0" @default.
- W3165162080 crossrefType "journal-article" @default.
- W3165162080 hasAuthorship W3165162080A5074190785 @default.
- W3165162080 hasAuthorship W3165162080A5074323481 @default.
- W3165162080 hasAuthorship W3165162080A5090007858 @default.
- W3165162080 hasBestOaLocation W31651620801 @default.
- W3165162080 hasConcept C105795698 @default.
- W3165162080 hasConcept C107673813 @default.
- W3165162080 hasConcept C119857082 @default.
- W3165162080 hasConcept C121955636 @default.
- W3165162080 hasConcept C124101348 @default.
- W3165162080 hasConcept C134306372 @default.
- W3165162080 hasConcept C144133560 @default.
- W3165162080 hasConcept C149782125 @default.
- W3165162080 hasConcept C154945302 @default.
- W3165162080 hasConcept C177769412 @default.
- W3165162080 hasConcept C182365436 @default.
- W3165162080 hasConcept C196083921 @default.
- W3165162080 hasConcept C2780009758 @default.
- W3165162080 hasConcept C33923547 @default.
- W3165162080 hasConcept C41008148 @default.
- W3165162080 hasConceptScore W3165162080C105795698 @default.
- W3165162080 hasConceptScore W3165162080C107673813 @default.
- W3165162080 hasConceptScore W3165162080C119857082 @default.
- W3165162080 hasConceptScore W3165162080C121955636 @default.
- W3165162080 hasConceptScore W3165162080C124101348 @default.
- W3165162080 hasConceptScore W3165162080C134306372 @default.
- W3165162080 hasConceptScore W3165162080C144133560 @default.
- W3165162080 hasConceptScore W3165162080C149782125 @default.
- W3165162080 hasConceptScore W3165162080C154945302 @default.
- W3165162080 hasConceptScore W3165162080C177769412 @default.
- W3165162080 hasConceptScore W3165162080C182365436 @default.
- W3165162080 hasConceptScore W3165162080C196083921 @default.
- W3165162080 hasConceptScore W3165162080C2780009758 @default.
- W3165162080 hasConceptScore W3165162080C33923547 @default.
- W3165162080 hasConceptScore W3165162080C41008148 @default.
- W3165162080 hasIssue "3" @default.
- W3165162080 hasLocation W31651620801 @default.
- W3165162080 hasLocation W31651620802 @default.
- W3165162080 hasOpenAccess W3165162080 @default.
- W3165162080 hasPrimaryLocation W31651620801 @default.
- W3165162080 hasRelatedWork W1529240532 @default.
- W3165162080 hasRelatedWork W2029516471 @default.
- W3165162080 hasRelatedWork W2069595786 @default.
- W3165162080 hasRelatedWork W2104073209 @default.
- W3165162080 hasRelatedWork W2475237729 @default.
- W3165162080 hasRelatedWork W2802781792 @default.
- W3165162080 hasRelatedWork W2899026863 @default.
- W3165162080 hasRelatedWork W3203752172 @default.
- W3165162080 hasRelatedWork W4362733212 @default.
- W3165162080 hasRelatedWork W4380550836 @default.