Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165169095> ?p ?o ?g. }
- W3165169095 endingPage "102362" @default.
- W3165169095 startingPage "102362" @default.
- W3165169095 abstract "Spatiotemporal fusion has provided a feasible way to generate fractional vegetation cover (FVC) data with high spatial and temporal resolution. However, when the currently available spatiotemporal fusion methods are applied over agricultural regions, they usually underestimate high FVC values at the peak vegetation growth stage with medium FVC values as base data. This mainly results from inconsistencies in the temporal variations between fine- and coarse-resolution data if substantial temporal changes occur in vegetation. Therefore, a Spatial and Temporal Fusion method combining with Vegetation Growth Models (STF-VGM) was proposed to address this problem in this study, which incorporates vegetation growth models into the fusion process. Unlike other spatiotemporal fusion methods that mainly rely on changes in coarse-resolution data for prediction, STF-VGM fully utilizes available coarse- and fine-resolution time series data, including uncontaminated information in cloud/cloud shadow contaminated images. By establishing vegetation growth models with time series data, a conversion relationship between coarse- and fine-resolution FVC that changes along with the nonlinear vegetation change process can be extracted. STF-VGM makes prediction based on this variable relationship. A typical agricultural region located in the North China Plain was selected as the study area. The validation results indicated that the prediction accuracy for high FVC values was significantly improved using STF-VGM compared to the commonly used Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and Flexible Spatiotemporal DAta Fusion (FSDAF) methods (STF-VGM: coefficient of determination (R2) = 0.9491, root mean square error (RMSE) = 0.0650, average difference (AD) = -0.0092; ESTARFM: R2 = 0.9341, RMSE = 0.1127, AD = -0.0631; FSDAF: R2 = 0.9224, RMSE = 0.1110, AD = -0.0599). The satisfactory performance of STF-VGM was also achieved in predicting FVC values at other vegetation growth stages (early growth stage: R2 = 0.8277, RMSE = 0.0440, AD = 0.0027; rapid growth stage: R2 = 0.9183, RMSE = 0.0844, AD = 0.0500). In addition, STF-VGM also has the potential to improve the spatiotemporal fusion accuracy of other vegetation parameters and vegetation indices, which will be evaluated in the future." @default.
- W3165169095 created "2021-06-07" @default.
- W3165169095 creator A5011417699 @default.
- W3165169095 creator A5014863773 @default.
- W3165169095 creator A5033418882 @default.
- W3165169095 creator A5034133888 @default.
- W3165169095 creator A5040040696 @default.
- W3165169095 creator A5053533157 @default.
- W3165169095 creator A5063493372 @default.
- W3165169095 creator A5079396291 @default.
- W3165169095 creator A5085883202 @default.
- W3165169095 date "2021-09-01" @default.
- W3165169095 modified "2023-10-11" @default.
- W3165169095 title "Improving the spatiotemporal fusion accuracy of fractional vegetation cover in agricultural regions by combining vegetation growth models" @default.
- W3165169095 cites W1614886892 @default.
- W3165169095 cites W1978160572 @default.
- W3165169095 cites W1984289242 @default.
- W3165169095 cites W2007134419 @default.
- W3165169095 cites W2013061102 @default.
- W3165169095 cites W2019703965 @default.
- W3165169095 cites W2026470773 @default.
- W3165169095 cites W2026608513 @default.
- W3165169095 cites W2027047363 @default.
- W3165169095 cites W2043273487 @default.
- W3165169095 cites W2051921576 @default.
- W3165169095 cites W2056811372 @default.
- W3165169095 cites W2066612219 @default.
- W3165169095 cites W2082263501 @default.
- W3165169095 cites W2088603520 @default.
- W3165169095 cites W2116370245 @default.
- W3165169095 cites W2117306007 @default.
- W3165169095 cites W2155096269 @default.
- W3165169095 cites W2158883105 @default.
- W3165169095 cites W2167594433 @default.
- W3165169095 cites W2200350976 @default.
- W3165169095 cites W2285717070 @default.
- W3165169095 cites W2518972658 @default.
- W3165169095 cites W2562900277 @default.
- W3165169095 cites W2727879026 @default.
- W3165169095 cites W2792478479 @default.
- W3165169095 cites W2795018073 @default.
- W3165169095 cites W2804394875 @default.
- W3165169095 cites W2854007112 @default.
- W3165169095 cites W2883368201 @default.
- W3165169095 cites W2938854198 @default.
- W3165169095 cites W2979332295 @default.
- W3165169095 cites W2988632115 @default.
- W3165169095 cites W2990083984 @default.
- W3165169095 cites W2997785864 @default.
- W3165169095 cites W3011940184 @default.
- W3165169095 cites W3025199156 @default.
- W3165169095 cites W61452412 @default.
- W3165169095 doi "https://doi.org/10.1016/j.jag.2021.102362" @default.
- W3165169095 hasPublicationYear "2021" @default.
- W3165169095 type Work @default.
- W3165169095 sameAs 3165169095 @default.
- W3165169095 citedByCount "8" @default.
- W3165169095 countsByYear W31651690952022 @default.
- W3165169095 countsByYear W31651690952023 @default.
- W3165169095 crossrefType "journal-article" @default.
- W3165169095 hasAuthorship W3165169095A5011417699 @default.
- W3165169095 hasAuthorship W3165169095A5014863773 @default.
- W3165169095 hasAuthorship W3165169095A5033418882 @default.
- W3165169095 hasAuthorship W3165169095A5034133888 @default.
- W3165169095 hasAuthorship W3165169095A5040040696 @default.
- W3165169095 hasAuthorship W3165169095A5053533157 @default.
- W3165169095 hasAuthorship W3165169095A5063493372 @default.
- W3165169095 hasAuthorship W3165169095A5079396291 @default.
- W3165169095 hasAuthorship W3165169095A5085883202 @default.
- W3165169095 hasBestOaLocation W31651690951 @default.
- W3165169095 hasConcept C105795698 @default.
- W3165169095 hasConcept C111368507 @default.
- W3165169095 hasConcept C119666444 @default.
- W3165169095 hasConcept C121332964 @default.
- W3165169095 hasConcept C127313418 @default.
- W3165169095 hasConcept C127413603 @default.
- W3165169095 hasConcept C132651083 @default.
- W3165169095 hasConcept C138885662 @default.
- W3165169095 hasConcept C139945424 @default.
- W3165169095 hasConcept C142724271 @default.
- W3165169095 hasConcept C147176958 @default.
- W3165169095 hasConcept C1549246 @default.
- W3165169095 hasConcept C154945302 @default.
- W3165169095 hasConcept C158525013 @default.
- W3165169095 hasConcept C205372480 @default.
- W3165169095 hasConcept C205649164 @default.
- W3165169095 hasConcept C2776133958 @default.
- W3165169095 hasConcept C2780376076 @default.
- W3165169095 hasConcept C2780648208 @default.
- W3165169095 hasConcept C33923547 @default.
- W3165169095 hasConcept C33954974 @default.
- W3165169095 hasConcept C39432304 @default.
- W3165169095 hasConcept C41008148 @default.
- W3165169095 hasConcept C41895202 @default.
- W3165169095 hasConcept C4792198 @default.
- W3165169095 hasConcept C62520636 @default.
- W3165169095 hasConcept C62649853 @default.
- W3165169095 hasConcept C71924100 @default.