Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165171569> ?p ?o ?g. }
- W3165171569 endingPage "438" @default.
- W3165171569 startingPage "426" @default.
- W3165171569 abstract "• Ensemble machine learning is applied to predict the specific capacity (~26.6 mAh g −1 ) and capacity retention of the material (>90%) under particular conditions. • Cerium oxynitride is synthesized using a urea glass method. • The experiment validates the prediction (~26 mAh g −1 and ~100% specific capacity retention) under the same conditions. From an engineering standpoint, specific capacity and cyclic stability may be considered the two most critical performance-related features for supercapacitor electrodes. The prediction of these two parameters is hence crucial for evaluating the prospect of a given material for a supercapacitor-electrode application. However, this prediction is highly non-trivial using existing atomistic approaches. As a solution, a combinatorial approach of value and grade prediction machine-learning models are used to predict the performance of a novel material (cerium oxynitride) for supercapacitor application. The model predicts the material to have a specific capacity of ~26.6 mAh g −1 and capacity retention of >90% for a particular material (morphology, composition, surface area) and operational (current density, applied potential window etc.) properties; which can be viably achieved via urea glass method. The experimental results (~26 mAh g −1 and ~100% capacity retention) considerably validate the predictive approach presented here. This article is the first instance wherein cerium oxynitride has been predicted and reported as a supercapacitor electrode. This makes the prediction and the validation made in this study of contemporary relevance." @default.
- W3165171569 created "2021-06-07" @default.
- W3165171569 creator A5059957211 @default.
- W3165171569 creator A5077021258 @default.
- W3165171569 creator A5079049057 @default.
- W3165171569 date "2021-09-01" @default.
- W3165171569 modified "2023-10-13" @default.
- W3165171569 title "Machine learning-based prediction of supercapacitor performance for a novel electrode material: Cerium oxynitride" @default.
- W3165171569 cites W1187130972 @default.
- W3165171569 cites W1844126746 @default.
- W3165171569 cites W1988080928 @default.
- W3165171569 cites W1998981899 @default.
- W3165171569 cites W1999587584 @default.
- W3165171569 cites W2000039469 @default.
- W3165171569 cites W2000762567 @default.
- W3165171569 cites W2011155439 @default.
- W3165171569 cites W2027883622 @default.
- W3165171569 cites W2044676366 @default.
- W3165171569 cites W2055876743 @default.
- W3165171569 cites W2069343125 @default.
- W3165171569 cites W2071429084 @default.
- W3165171569 cites W2079824469 @default.
- W3165171569 cites W2081693608 @default.
- W3165171569 cites W2086190774 @default.
- W3165171569 cites W2106248046 @default.
- W3165171569 cites W2107649758 @default.
- W3165171569 cites W2122709469 @default.
- W3165171569 cites W2125864327 @default.
- W3165171569 cites W2144092555 @default.
- W3165171569 cites W2144723766 @default.
- W3165171569 cites W2155806188 @default.
- W3165171569 cites W2162677524 @default.
- W3165171569 cites W2324458498 @default.
- W3165171569 cites W2338402873 @default.
- W3165171569 cites W2517503865 @default.
- W3165171569 cites W2590783786 @default.
- W3165171569 cites W2610548078 @default.
- W3165171569 cites W2616347255 @default.
- W3165171569 cites W2738723535 @default.
- W3165171569 cites W2754862495 @default.
- W3165171569 cites W2775221995 @default.
- W3165171569 cites W2785163900 @default.
- W3165171569 cites W2792384323 @default.
- W3165171569 cites W2802077214 @default.
- W3165171569 cites W2810813580 @default.
- W3165171569 cites W2884430236 @default.
- W3165171569 cites W2904120402 @default.
- W3165171569 cites W2911964244 @default.
- W3165171569 cites W2947371051 @default.
- W3165171569 cites W2958532717 @default.
- W3165171569 cites W2967199092 @default.
- W3165171569 cites W2970393422 @default.
- W3165171569 cites W2974480348 @default.
- W3165171569 cites W2975256032 @default.
- W3165171569 cites W2985300559 @default.
- W3165171569 cites W2985692238 @default.
- W3165171569 cites W2987811481 @default.
- W3165171569 cites W2996099798 @default.
- W3165171569 cites W2996202833 @default.
- W3165171569 cites W2996222594 @default.
- W3165171569 cites W3004719690 @default.
- W3165171569 cites W3005582815 @default.
- W3165171569 cites W3011013515 @default.
- W3165171569 cites W3011716746 @default.
- W3165171569 cites W3032545825 @default.
- W3165171569 cites W3036304755 @default.
- W3165171569 cites W3045493044 @default.
- W3165171569 cites W3090572406 @default.
- W3165171569 cites W3092317376 @default.
- W3165171569 cites W3113422025 @default.
- W3165171569 cites W3114526902 @default.
- W3165171569 cites W3118795178 @default.
- W3165171569 cites W991687400 @default.
- W3165171569 doi "https://doi.org/10.1016/j.ensm.2021.05.024" @default.
- W3165171569 hasPublicationYear "2021" @default.
- W3165171569 type Work @default.
- W3165171569 sameAs 3165171569 @default.
- W3165171569 citedByCount "22" @default.
- W3165171569 countsByYear W31651715692021 @default.
- W3165171569 countsByYear W31651715692022 @default.
- W3165171569 countsByYear W31651715692023 @default.
- W3165171569 crossrefType "journal-article" @default.
- W3165171569 hasAuthorship W3165171569A5059957211 @default.
- W3165171569 hasAuthorship W3165171569A5077021258 @default.
- W3165171569 hasAuthorship W3165171569A5079049057 @default.
- W3165171569 hasConcept C147789679 @default.
- W3165171569 hasConcept C159985019 @default.
- W3165171569 hasConcept C17525397 @default.
- W3165171569 hasConcept C185592680 @default.
- W3165171569 hasConcept C191897082 @default.
- W3165171569 hasConcept C192562407 @default.
- W3165171569 hasConcept C30066665 @default.
- W3165171569 hasConcept C49040817 @default.
- W3165171569 hasConcept C523597863 @default.
- W3165171569 hasConcept C6585489 @default.
- W3165171569 hasConceptScore W3165171569C147789679 @default.
- W3165171569 hasConceptScore W3165171569C159985019 @default.
- W3165171569 hasConceptScore W3165171569C17525397 @default.