Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165193111> ?p ?o ?g. }
- W3165193111 endingPage "78451" @default.
- W3165193111 startingPage "78428" @default.
- W3165193111 abstract "During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This research study presents a boreholes data analysis architecture based on data and predictive analysis models to improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture aims to process and analyze borehole data based on different hydrogeological characteristics using data and predictive analytics to enhance underground safety verification and planning of borehole resources. The proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize the cost and time of the digging operations. Furthermore, different performance measures are utilized to evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and precisely predicts boreholes depth compared to the conventional regression models. The experimental and comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis architecture. The experimental results will improve underground safety management and the efficiency of boreholes for future wells." @default.
- W3165193111 created "2021-06-07" @default.
- W3165193111 creator A5004507358 @default.
- W3165193111 creator A5019722954 @default.
- W3165193111 creator A5024164847 @default.
- W3165193111 creator A5027095726 @default.
- W3165193111 creator A5040571073 @default.
- W3165193111 creator A5061409578 @default.
- W3165193111 creator A5078091681 @default.
- W3165193111 date "2021-01-01" @default.
- W3165193111 modified "2023-09-25" @default.
- W3165193111 title "Boreholes Data Analysis Architecture Based on Clustering and Prediction Models for Enhancing Underground Safety Verification" @default.
- W3165193111 cites W1970360626 @default.
- W3165193111 cites W1992922681 @default.
- W3165193111 cites W2005309788 @default.
- W3165193111 cites W2014869513 @default.
- W3165193111 cites W2038409260 @default.
- W3165193111 cites W2058720760 @default.
- W3165193111 cites W2064675550 @default.
- W3165193111 cites W2080146475 @default.
- W3165193111 cites W2083533727 @default.
- W3165193111 cites W2106728628 @default.
- W3165193111 cites W2109574129 @default.
- W3165193111 cites W2119910794 @default.
- W3165193111 cites W2149828813 @default.
- W3165193111 cites W2160815625 @default.
- W3165193111 cites W2161078209 @default.
- W3165193111 cites W2163922914 @default.
- W3165193111 cites W2175531309 @default.
- W3165193111 cites W2256386252 @default.
- W3165193111 cites W2261525379 @default.
- W3165193111 cites W2471623547 @default.
- W3165193111 cites W2530960785 @default.
- W3165193111 cites W2565232403 @default.
- W3165193111 cites W2589806773 @default.
- W3165193111 cites W2605739831 @default.
- W3165193111 cites W2613831280 @default.
- W3165193111 cites W2748163690 @default.
- W3165193111 cites W2752053152 @default.
- W3165193111 cites W2763279802 @default.
- W3165193111 cites W2763327216 @default.
- W3165193111 cites W2775361029 @default.
- W3165193111 cites W2776741657 @default.
- W3165193111 cites W2807877445 @default.
- W3165193111 cites W2810145833 @default.
- W3165193111 cites W2887575872 @default.
- W3165193111 cites W2891234523 @default.
- W3165193111 cites W2891589939 @default.
- W3165193111 cites W2894821558 @default.
- W3165193111 cites W2899187527 @default.
- W3165193111 cites W2904760941 @default.
- W3165193111 cites W2913560694 @default.
- W3165193111 cites W2918737589 @default.
- W3165193111 cites W2924032156 @default.
- W3165193111 cites W2924217342 @default.
- W3165193111 cites W2943521617 @default.
- W3165193111 cites W2964347643 @default.
- W3165193111 cites W2968893289 @default.
- W3165193111 cites W2984376566 @default.
- W3165193111 cites W3016438039 @default.
- W3165193111 cites W3021760635 @default.
- W3165193111 cites W3024527458 @default.
- W3165193111 cites W3033555723 @default.
- W3165193111 cites W3048097099 @default.
- W3165193111 cites W3091914433 @default.
- W3165193111 cites W3112401865 @default.
- W3165193111 cites W3115044086 @default.
- W3165193111 cites W3119269115 @default.
- W3165193111 cites W3131268456 @default.
- W3165193111 cites W3134488552 @default.
- W3165193111 cites W3135855863 @default.
- W3165193111 cites W4232518399 @default.
- W3165193111 cites W602025207 @default.
- W3165193111 doi "https://doi.org/10.1109/access.2021.3083175" @default.
- W3165193111 hasPublicationYear "2021" @default.
- W3165193111 type Work @default.
- W3165193111 sameAs 3165193111 @default.
- W3165193111 citedByCount "6" @default.
- W3165193111 countsByYear W31651931112021 @default.
- W3165193111 countsByYear W31651931112022 @default.
- W3165193111 countsByYear W31651931112023 @default.
- W3165193111 crossrefType "journal-article" @default.
- W3165193111 hasAuthorship W3165193111A5004507358 @default.
- W3165193111 hasAuthorship W3165193111A5019722954 @default.
- W3165193111 hasAuthorship W3165193111A5024164847 @default.
- W3165193111 hasAuthorship W3165193111A5027095726 @default.
- W3165193111 hasAuthorship W3165193111A5040571073 @default.
- W3165193111 hasAuthorship W3165193111A5061409578 @default.
- W3165193111 hasAuthorship W3165193111A5078091681 @default.
- W3165193111 hasBestOaLocation W31651931111 @default.
- W3165193111 hasConcept C111919701 @default.
- W3165193111 hasConcept C124101348 @default.
- W3165193111 hasConcept C127413603 @default.
- W3165193111 hasConcept C150560799 @default.
- W3165193111 hasConcept C154945302 @default.
- W3165193111 hasConcept C166957645 @default.
- W3165193111 hasConcept C187320778 @default.
- W3165193111 hasConcept C2779080342 @default.