Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165355890> ?p ?o ?g. }
- W3165355890 abstract "Abstract Background Standard methods for analysing data from large-scale assessments (LSA) cannot merely be adopted if hierarchical (or multilevel) regression modelling should be applied. Currently various approaches exist; they all follow generally a design-based model of estimation using the pseudo maximum likelihood method and adjusted weights for the corresponding hierarchies. Specifically, several different approaches to using and scaling sampling weights in hierarchical models are promoted, yet no study has compared them to provide evidence of which method performs best and therefore should be preferred. Furthermore, different software programs implement different estimation algorithms, leading to different results. Objective and method In this study, we determine based on a simulation, the estimation procedure showing the smallest distortion to the actual population features. We consider different estimation, optimization and acceleration methods, and different approaches on using sampling weights. Three scenarios have been simulated using the statistical program R. The analyses have been performed with two software packages for hierarchical modelling of LSA data, namely Mplus and SAS. Results and conclusions The simulation results revealed three weighting approaches performing best in retrieving the true population parameters. One of them implies using only level two weights (here: final school weights) and is because of its simple implementation the most favourable one. This finding should provide a clear recommendation to researchers for using weights in multilevel modelling (MLM) when analysing LSA data, or data with a similar structure. Further, we found only little differences in the performance and default settings of the software programs used, with the software package Mplus providing slightly more precise estimates. Different algorithm starting settings or different accelerating methods for optimization could cause these distinctions. However, it should be emphasized that with the recommended weighting approach, both software packages perform equally well. Finally, two scaling techniques for student weights have been investigated. They provide both nearly identical results. We use data from the Programme for International Student Assessment (PISA) 2015 to illustrate the practical importance and relevance of weighting in analysing large-scale assessment data with hierarchical models." @default.
- W3165355890 created "2021-06-07" @default.
- W3165355890 creator A5007624977 @default.
- W3165355890 creator A5063577790 @default.
- W3165355890 creator A5065420348 @default.
- W3165355890 creator A5070895524 @default.
- W3165355890 date "2021-03-26" @default.
- W3165355890 modified "2023-10-16" @default.
- W3165355890 title "Sampling weights in multilevel modelling: an investigation using PISA sampling structures" @default.
- W3165355890 cites W1539235297 @default.
- W3165355890 cites W1539550814 @default.
- W3165355890 cites W1966331501 @default.
- W3165355890 cites W1979304800 @default.
- W3165355890 cites W1985047833 @default.
- W3165355890 cites W1996345040 @default.
- W3165355890 cites W1998449083 @default.
- W3165355890 cites W2011527581 @default.
- W3165355890 cites W2011981966 @default.
- W3165355890 cites W2017966270 @default.
- W3165355890 cites W2041079835 @default.
- W3165355890 cites W2046376969 @default.
- W3165355890 cites W2049633694 @default.
- W3165355890 cites W205462460 @default.
- W3165355890 cites W2054804828 @default.
- W3165355890 cites W2072708948 @default.
- W3165355890 cites W2085360857 @default.
- W3165355890 cites W2085714285 @default.
- W3165355890 cites W2086177209 @default.
- W3165355890 cites W2090444608 @default.
- W3165355890 cites W2093754907 @default.
- W3165355890 cites W2108849070 @default.
- W3165355890 cites W2121909644 @default.
- W3165355890 cites W2127682847 @default.
- W3165355890 cites W2130388938 @default.
- W3165355890 cites W2139575253 @default.
- W3165355890 cites W2164629226 @default.
- W3165355890 cites W2243040480 @default.
- W3165355890 cites W2326450941 @default.
- W3165355890 cites W2335699666 @default.
- W3165355890 cites W3083615391 @default.
- W3165355890 cites W4205889158 @default.
- W3165355890 cites W4233471163 @default.
- W3165355890 cites W4237826793 @default.
- W3165355890 cites W4239197977 @default.
- W3165355890 cites W4241100824 @default.
- W3165355890 cites W4241696903 @default.
- W3165355890 cites W4248171805 @default.
- W3165355890 cites W4248174210 @default.
- W3165355890 cites W690446 @default.
- W3165355890 doi "https://doi.org/10.1186/s40536-021-00099-0" @default.
- W3165355890 hasPublicationYear "2021" @default.
- W3165355890 type Work @default.
- W3165355890 sameAs 3165355890 @default.
- W3165355890 citedByCount "16" @default.
- W3165355890 countsByYear W31653558902021 @default.
- W3165355890 countsByYear W31653558902022 @default.
- W3165355890 countsByYear W31653558902023 @default.
- W3165355890 crossrefType "journal-article" @default.
- W3165355890 hasAuthorship W3165355890A5007624977 @default.
- W3165355890 hasAuthorship W3165355890A5063577790 @default.
- W3165355890 hasAuthorship W3165355890A5065420348 @default.
- W3165355890 hasAuthorship W3165355890A5070895524 @default.
- W3165355890 hasBestOaLocation W31653558901 @default.
- W3165355890 hasConcept C105795698 @default.
- W3165355890 hasConcept C106131492 @default.
- W3165355890 hasConcept C119857082 @default.
- W3165355890 hasConcept C124101348 @default.
- W3165355890 hasConcept C126838900 @default.
- W3165355890 hasConcept C127413603 @default.
- W3165355890 hasConcept C140779682 @default.
- W3165355890 hasConcept C144986985 @default.
- W3165355890 hasConcept C183115368 @default.
- W3165355890 hasConcept C199360897 @default.
- W3165355890 hasConcept C201995342 @default.
- W3165355890 hasConcept C205649164 @default.
- W3165355890 hasConcept C2777904410 @default.
- W3165355890 hasConcept C2778755073 @default.
- W3165355890 hasConcept C31972630 @default.
- W3165355890 hasConcept C33923547 @default.
- W3165355890 hasConcept C41008148 @default.
- W3165355890 hasConcept C53059260 @default.
- W3165355890 hasConcept C58640448 @default.
- W3165355890 hasConcept C71924100 @default.
- W3165355890 hasConcept C96250715 @default.
- W3165355890 hasConceptScore W3165355890C105795698 @default.
- W3165355890 hasConceptScore W3165355890C106131492 @default.
- W3165355890 hasConceptScore W3165355890C119857082 @default.
- W3165355890 hasConceptScore W3165355890C124101348 @default.
- W3165355890 hasConceptScore W3165355890C126838900 @default.
- W3165355890 hasConceptScore W3165355890C127413603 @default.
- W3165355890 hasConceptScore W3165355890C140779682 @default.
- W3165355890 hasConceptScore W3165355890C144986985 @default.
- W3165355890 hasConceptScore W3165355890C183115368 @default.
- W3165355890 hasConceptScore W3165355890C199360897 @default.
- W3165355890 hasConceptScore W3165355890C201995342 @default.
- W3165355890 hasConceptScore W3165355890C205649164 @default.
- W3165355890 hasConceptScore W3165355890C2777904410 @default.
- W3165355890 hasConceptScore W3165355890C2778755073 @default.
- W3165355890 hasConceptScore W3165355890C31972630 @default.
- W3165355890 hasConceptScore W3165355890C33923547 @default.