Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165451569> ?p ?o ?g. }
- W3165451569 endingPage "5670" @default.
- W3165451569 startingPage "5670" @default.
- W3165451569 abstract "The classification of vehicular crashes based on their severity is crucial since not all of them have the same financial and injury values. In addition, avoiding crashes by identifying their influential factors is possible via accurate prediction modeling. In crash severity analysis, accurate and time-saving prediction models are necessary for classifying crashes based on their severity. Moreover, statistical models are incapable of identifying the potential severity of crashes regarding influencing factors incorporated in models. Unlike previous research efforts, which focused on the limited class of crash severity, including property damage only (PDO), fatality, and injury by applying data mining models, the present study sought to predict crash frequency according to five severity levels of PDO, fatality, severe injury, other visible injuries, and complaint of pain. The multinomial logistic regression (MLR) model and data mining approaches, including artificial neural network-multilayer perceptron (ANN-MLP) and two decision tree techniques, (i.e., Chi-square automatic interaction detector (CHAID) and C5.0) are utilized based on traffic crash records for State Highways in California, USA. The comparison of the findings of the relative importance of ten qualitative and ten quantitative independent variables incorporated in CHAID and C5.0 indicated that the cause of the crash (X1) and the number of vehicles (X5) were known as the most influential variables involved in the crash. However, the cause of the crash (X1) and weather (X2) were identified as the most contributing variables by the ANN-MLP model. In addition, the MLR model showed that the driver’s age (X11) accounts for a larger proportion of traffic crash severity. Therefore, the sensitivity analysis demonstrated that C5.0 had the best performance for predicting road crash severity. Not only did C5.0 take a shorter time (0.05 s) compared to CHAID, MLP, and MLR, it also represented the highest accuracy rate for the training set. The overall prediction accuracy based on the training data was approximately 88.09% compared to 77.21% and 70.21% for CHAID and MLP models. In general, the findings of this study revealed that C5.0 can be a promising tool for predicting road crash severity." @default.
- W3165451569 created "2021-06-07" @default.
- W3165451569 creator A5012119390 @default.
- W3165451569 creator A5025550409 @default.
- W3165451569 creator A5031043722 @default.
- W3165451569 date "2021-05-18" @default.
- W3165451569 modified "2023-10-16" @default.
- W3165451569 title "Crash Severity Analysis of Highways Based on Multinomial Logistic Regression Model, Decision Tree Techniques, and Artificial Neural Network: A Modeling Comparison" @default.
- W3165451569 cites W1966398873 @default.
- W3165451569 cites W1977619318 @default.
- W3165451569 cites W1980399291 @default.
- W3165451569 cites W2001018452 @default.
- W3165451569 cites W2008909284 @default.
- W3165451569 cites W2016701804 @default.
- W3165451569 cites W2031316963 @default.
- W3165451569 cites W2052505511 @default.
- W3165451569 cites W2058280008 @default.
- W3165451569 cites W2059099031 @default.
- W3165451569 cites W2059386649 @default.
- W3165451569 cites W2077483615 @default.
- W3165451569 cites W2086927126 @default.
- W3165451569 cites W2090563475 @default.
- W3165451569 cites W2100372437 @default.
- W3165451569 cites W2138604806 @default.
- W3165451569 cites W2142827986 @default.
- W3165451569 cites W2153476503 @default.
- W3165451569 cites W2170423728 @default.
- W3165451569 cites W2316522976 @default.
- W3165451569 cites W2399542702 @default.
- W3165451569 cites W2509631465 @default.
- W3165451569 cites W2562005416 @default.
- W3165451569 cites W2587248859 @default.
- W3165451569 cites W2595091268 @default.
- W3165451569 cites W2730518255 @default.
- W3165451569 cites W2741606367 @default.
- W3165451569 cites W2750591756 @default.
- W3165451569 cites W2768158027 @default.
- W3165451569 cites W2809407956 @default.
- W3165451569 cites W2885114451 @default.
- W3165451569 cites W2889046169 @default.
- W3165451569 cites W2896947817 @default.
- W3165451569 cites W2904879733 @default.
- W3165451569 cites W2914462341 @default.
- W3165451569 cites W2926668486 @default.
- W3165451569 cites W2930108727 @default.
- W3165451569 cites W2945896632 @default.
- W3165451569 cites W2951684046 @default.
- W3165451569 cites W2951895352 @default.
- W3165451569 cites W2971397378 @default.
- W3165451569 cites W2973374362 @default.
- W3165451569 cites W2999349943 @default.
- W3165451569 cites W3006171834 @default.
- W3165451569 cites W3008879069 @default.
- W3165451569 cites W3010994182 @default.
- W3165451569 cites W3018720890 @default.
- W3165451569 cites W3028266620 @default.
- W3165451569 cites W3036689187 @default.
- W3165451569 cites W3040300275 @default.
- W3165451569 cites W3043432080 @default.
- W3165451569 cites W3047006705 @default.
- W3165451569 cites W3082812231 @default.
- W3165451569 cites W3120344490 @default.
- W3165451569 doi "https://doi.org/10.3390/su13105670" @default.
- W3165451569 hasPublicationYear "2021" @default.
- W3165451569 type Work @default.
- W3165451569 sameAs 3165451569 @default.
- W3165451569 citedByCount "17" @default.
- W3165451569 countsByYear W31654515692021 @default.
- W3165451569 countsByYear W31654515692022 @default.
- W3165451569 countsByYear W31654515692023 @default.
- W3165451569 crossrefType "journal-article" @default.
- W3165451569 hasAuthorship W3165451569A5012119390 @default.
- W3165451569 hasAuthorship W3165451569A5025550409 @default.
- W3165451569 hasAuthorship W3165451569A5031043722 @default.
- W3165451569 hasBestOaLocation W31654515691 @default.
- W3165451569 hasConcept C105795698 @default.
- W3165451569 hasConcept C117568660 @default.
- W3165451569 hasConcept C119857082 @default.
- W3165451569 hasConcept C124101348 @default.
- W3165451569 hasConcept C151956035 @default.
- W3165451569 hasConcept C154945302 @default.
- W3165451569 hasConcept C16023879 @default.
- W3165451569 hasConcept C183469790 @default.
- W3165451569 hasConcept C194828623 @default.
- W3165451569 hasConcept C199360897 @default.
- W3165451569 hasConcept C3017944768 @default.
- W3165451569 hasConcept C33923547 @default.
- W3165451569 hasConcept C41008148 @default.
- W3165451569 hasConcept C50644808 @default.
- W3165451569 hasConcept C71924100 @default.
- W3165451569 hasConcept C84525736 @default.
- W3165451569 hasConceptScore W3165451569C105795698 @default.
- W3165451569 hasConceptScore W3165451569C117568660 @default.
- W3165451569 hasConceptScore W3165451569C119857082 @default.
- W3165451569 hasConceptScore W3165451569C124101348 @default.
- W3165451569 hasConceptScore W3165451569C151956035 @default.
- W3165451569 hasConceptScore W3165451569C154945302 @default.
- W3165451569 hasConceptScore W3165451569C16023879 @default.