Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165486239> ?p ?o ?g. }
- W3165486239 endingPage "59" @default.
- W3165486239 startingPage "45" @default.
- W3165486239 abstract "Breast cancer is one of the most common diseases among women, accounting for many deaths each year. Even though cancer can be treated and cured in its early stages, many patients are diagnosed at a late stage. Data mining is the method of finding or extracting information from massive databases or datasets, and it is a field of computer science with a lot of potentials. It covers a wide range of areas, one of which is classification. Classification may also be accomplished using a variety of methods or algorithms. With the aid of MATLAB, five classification algorithms were compared. This paper presents a performance comparison among the classifiers: Support Vector Machine (SVM), Logistics Regression (LR), K-Nearest Neighbors (K-NN), Weighted K-Nearest Neighbors (Weighted K-NN), and Gaussian Naïve Bayes (Gaussian NB). The data set was taken from UCI Machine learning Repository. The main objective of this study is to classify breast cancer women using the application of machine learning algorithms based on their accuracy. The results have revealed that Weighted K-NN (96.7%) has the highest accuracy among all the classifiers." @default.
- W3165486239 created "2021-06-07" @default.
- W3165486239 creator A5007389896 @default.
- W3165486239 creator A5015723539 @default.
- W3165486239 creator A5048204930 @default.
- W3165486239 date "2021-05-19" @default.
- W3165486239 modified "2023-10-16" @default.
- W3165486239 title "A Comparative Analysis and Predicting for Breast Cancer Detection Based on Data Mining Models" @default.
- W3165486239 cites W1512117221 @default.
- W3165486239 cites W1824657313 @default.
- W3165486239 cites W2014846242 @default.
- W3165486239 cites W2086540457 @default.
- W3165486239 cites W2102615453 @default.
- W3165486239 cites W2104541653 @default.
- W3165486239 cites W2123504579 @default.
- W3165486239 cites W2171941418 @default.
- W3165486239 cites W2291848788 @default.
- W3165486239 cites W2487770199 @default.
- W3165486239 cites W2617018498 @default.
- W3165486239 cites W2765161822 @default.
- W3165486239 cites W2772660342 @default.
- W3165486239 cites W2787400151 @default.
- W3165486239 cites W2789019223 @default.
- W3165486239 cites W2791030877 @default.
- W3165486239 cites W2806419994 @default.
- W3165486239 cites W2808254136 @default.
- W3165486239 cites W2903461962 @default.
- W3165486239 cites W2914660712 @default.
- W3165486239 cites W2914899668 @default.
- W3165486239 cites W2946885733 @default.
- W3165486239 cites W2947052202 @default.
- W3165486239 cites W2965231525 @default.
- W3165486239 cites W2968058863 @default.
- W3165486239 cites W3000787566 @default.
- W3165486239 cites W3009142625 @default.
- W3165486239 cites W3016834586 @default.
- W3165486239 cites W3019898597 @default.
- W3165486239 cites W3097427031 @default.
- W3165486239 cites W3097687649 @default.
- W3165486239 cites W3105578466 @default.
- W3165486239 cites W3108808737 @default.
- W3165486239 cites W3120128936 @default.
- W3165486239 cites W46790137 @default.
- W3165486239 cites W3203577123 @default.
- W3165486239 doi "https://doi.org/10.9734/ajrcos/2021/v8i430209" @default.
- W3165486239 hasPublicationYear "2021" @default.
- W3165486239 type Work @default.
- W3165486239 sameAs 3165486239 @default.
- W3165486239 citedByCount "7" @default.
- W3165486239 countsByYear W31654862392021 @default.
- W3165486239 countsByYear W31654862392022 @default.
- W3165486239 countsByYear W31654862392023 @default.
- W3165486239 crossrefType "journal-article" @default.
- W3165486239 hasAuthorship W3165486239A5007389896 @default.
- W3165486239 hasAuthorship W3165486239A5015723539 @default.
- W3165486239 hasAuthorship W3165486239A5048204930 @default.
- W3165486239 hasBestOaLocation W31654862391 @default.
- W3165486239 hasConcept C111919701 @default.
- W3165486239 hasConcept C113238511 @default.
- W3165486239 hasConcept C119857082 @default.
- W3165486239 hasConcept C121608353 @default.
- W3165486239 hasConcept C12267149 @default.
- W3165486239 hasConcept C124101348 @default.
- W3165486239 hasConcept C126322002 @default.
- W3165486239 hasConcept C153180895 @default.
- W3165486239 hasConcept C154945302 @default.
- W3165486239 hasConcept C202444582 @default.
- W3165486239 hasConcept C2780365114 @default.
- W3165486239 hasConcept C33923547 @default.
- W3165486239 hasConcept C41008148 @default.
- W3165486239 hasConcept C52001869 @default.
- W3165486239 hasConcept C530470458 @default.
- W3165486239 hasConcept C58489278 @default.
- W3165486239 hasConcept C71924100 @default.
- W3165486239 hasConcept C9652623 @default.
- W3165486239 hasConceptScore W3165486239C111919701 @default.
- W3165486239 hasConceptScore W3165486239C113238511 @default.
- W3165486239 hasConceptScore W3165486239C119857082 @default.
- W3165486239 hasConceptScore W3165486239C121608353 @default.
- W3165486239 hasConceptScore W3165486239C12267149 @default.
- W3165486239 hasConceptScore W3165486239C124101348 @default.
- W3165486239 hasConceptScore W3165486239C126322002 @default.
- W3165486239 hasConceptScore W3165486239C153180895 @default.
- W3165486239 hasConceptScore W3165486239C154945302 @default.
- W3165486239 hasConceptScore W3165486239C202444582 @default.
- W3165486239 hasConceptScore W3165486239C2780365114 @default.
- W3165486239 hasConceptScore W3165486239C33923547 @default.
- W3165486239 hasConceptScore W3165486239C41008148 @default.
- W3165486239 hasConceptScore W3165486239C52001869 @default.
- W3165486239 hasConceptScore W3165486239C530470458 @default.
- W3165486239 hasConceptScore W3165486239C58489278 @default.
- W3165486239 hasConceptScore W3165486239C71924100 @default.
- W3165486239 hasConceptScore W3165486239C9652623 @default.
- W3165486239 hasLocation W31654862391 @default.
- W3165486239 hasOpenAccess W3165486239 @default.
- W3165486239 hasPrimaryLocation W31654862391 @default.
- W3165486239 hasRelatedWork W2126100045 @default.
- W3165486239 hasRelatedWork W2539163683 @default.