Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165487777> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3165487777 endingPage "101323" @default.
- W3165487777 startingPage "101323" @default.
- W3165487777 abstract "Real-time automation of leaf image segmentation is a difficult task when there are similar leaves in the background, particularly in leaf images captured in the cultivation fields. These leaf images play a key role in monitoring the growth and health of the plants. An hierarchical approach based on Kernel Linear Discriminant Analysis (KLDA) and Gaussian process regression is proposed in this paper for automating the segmentation process. In the first level, KLDA is used to discriminate the target leaf from its similar leaf background in two steps - (i) detecting the surfaces of the target leaf and (ii) detecting the edges of the target leaf. The resulting coarsely segmented image is further subjected to the second level consisting of the edge detection and morphological operations necessary for obtaining the fine segmented image. To fully automate the segmentation process, it is proposed to use the Gaussian process based regression technique for estimating the tuning parameters required for morphological processing. The proposed method is tested on a Sunflower leaf dataset and the ImageCLEF ([email protected]) dataset. The experimental results reveal the potential of the proposed method in automating the leaf segmentation process." @default.
- W3165487777 created "2021-06-07" @default.
- W3165487777 creator A5000673111 @default.
- W3165487777 creator A5041024203 @default.
- W3165487777 date "2021-07-01" @default.
- W3165487777 modified "2023-09-28" @default.
- W3165487777 title "An hierarchical approach for automatic segmentation of leaf images with similar background using kernel smoothing based Gaussian process regression" @default.
- W3165487777 cites W1989776242 @default.
- W3165487777 cites W2006021929 @default.
- W3165487777 cites W2017036863 @default.
- W3165487777 cites W2077732237 @default.
- W3165487777 cites W2107319053 @default.
- W3165487777 cites W2163999590 @default.
- W3165487777 cites W2794937766 @default.
- W3165487777 cites W2884143671 @default.
- W3165487777 cites W2907598569 @default.
- W3165487777 cites W2916782619 @default.
- W3165487777 cites W2951048935 @default.
- W3165487777 cites W2963830562 @default.
- W3165487777 cites W2982142862 @default.
- W3165487777 cites W3120188592 @default.
- W3165487777 cites W3128152288 @default.
- W3165487777 doi "https://doi.org/10.1016/j.ecoinf.2021.101323" @default.
- W3165487777 hasPublicationYear "2021" @default.
- W3165487777 type Work @default.
- W3165487777 sameAs 3165487777 @default.
- W3165487777 citedByCount "5" @default.
- W3165487777 countsByYear W31654877772022 @default.
- W3165487777 countsByYear W31654877772023 @default.
- W3165487777 crossrefType "journal-article" @default.
- W3165487777 hasAuthorship W3165487777A5000673111 @default.
- W3165487777 hasAuthorship W3165487777A5041024203 @default.
- W3165487777 hasConcept C111919701 @default.
- W3165487777 hasConcept C114614502 @default.
- W3165487777 hasConcept C121332964 @default.
- W3165487777 hasConcept C124504099 @default.
- W3165487777 hasConcept C153180895 @default.
- W3165487777 hasConcept C154945302 @default.
- W3165487777 hasConcept C163716315 @default.
- W3165487777 hasConcept C31972630 @default.
- W3165487777 hasConcept C33923547 @default.
- W3165487777 hasConcept C3770464 @default.
- W3165487777 hasConcept C41008148 @default.
- W3165487777 hasConcept C61326573 @default.
- W3165487777 hasConcept C62520636 @default.
- W3165487777 hasConcept C65885262 @default.
- W3165487777 hasConcept C69738355 @default.
- W3165487777 hasConcept C74193536 @default.
- W3165487777 hasConcept C89600930 @default.
- W3165487777 hasConcept C98045186 @default.
- W3165487777 hasConceptScore W3165487777C111919701 @default.
- W3165487777 hasConceptScore W3165487777C114614502 @default.
- W3165487777 hasConceptScore W3165487777C121332964 @default.
- W3165487777 hasConceptScore W3165487777C124504099 @default.
- W3165487777 hasConceptScore W3165487777C153180895 @default.
- W3165487777 hasConceptScore W3165487777C154945302 @default.
- W3165487777 hasConceptScore W3165487777C163716315 @default.
- W3165487777 hasConceptScore W3165487777C31972630 @default.
- W3165487777 hasConceptScore W3165487777C33923547 @default.
- W3165487777 hasConceptScore W3165487777C3770464 @default.
- W3165487777 hasConceptScore W3165487777C41008148 @default.
- W3165487777 hasConceptScore W3165487777C61326573 @default.
- W3165487777 hasConceptScore W3165487777C62520636 @default.
- W3165487777 hasConceptScore W3165487777C65885262 @default.
- W3165487777 hasConceptScore W3165487777C69738355 @default.
- W3165487777 hasConceptScore W3165487777C74193536 @default.
- W3165487777 hasConceptScore W3165487777C89600930 @default.
- W3165487777 hasConceptScore W3165487777C98045186 @default.
- W3165487777 hasLocation W31654877771 @default.
- W3165487777 hasOpenAccess W3165487777 @default.
- W3165487777 hasPrimaryLocation W31654877771 @default.
- W3165487777 hasRelatedWork W1507266234 @default.
- W3165487777 hasRelatedWork W1563895814 @default.
- W3165487777 hasRelatedWork W1631910785 @default.
- W3165487777 hasRelatedWork W1669643531 @default.
- W3165487777 hasRelatedWork W1700740617 @default.
- W3165487777 hasRelatedWork W2069711651 @default.
- W3165487777 hasRelatedWork W2117664411 @default.
- W3165487777 hasRelatedWork W2117933325 @default.
- W3165487777 hasRelatedWork W2739874619 @default.
- W3165487777 hasRelatedWork W1967061043 @default.
- W3165487777 hasVolume "63" @default.
- W3165487777 isParatext "false" @default.
- W3165487777 isRetracted "false" @default.
- W3165487777 magId "3165487777" @default.
- W3165487777 workType "article" @default.