Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165523928> ?p ?o ?g. }
- W3165523928 endingPage "107915" @default.
- W3165523928 startingPage "107915" @default.
- W3165523928 abstract "The abundance of training data is not guaranteed in various supervised learning applications. One of these situations is the post-earthquake regional damage assessment of buildings. Querying the damage label of each building requires a thorough inspection by experts, and thus, is an expensive task. A practical approach is to sample the most informative buildings in a sequential learning scheme. Active learning methods recommend the most informative cases that are able to maximally reduce the generalization error. The information-theoretic measure of mutual information (MI), which maximizes the expected information gain over the input domain, can be used for informative sampling of a dataset in a pool-based scenario. However, the computational complexity of the standard MI algorithm prevents the utilization of this method on large datasets. A local kernels strategy was proposed to reduce the computational costs, but the adaptability of the kernels to the observed labels was not considered in the original formulation of this strategy. In this article, an adaptive local kernels methodology is developed that enables the conformability of the kernels to the observed output data while enhancing the computational complexity of the standard MI algorithm. The proposed algorithm is developed to work with a Gaussian process regression (GPR) method, where the kernel hyperparameters are updated after each label query using maximum likelihood estimation. In the sequential learning procedure, the updated hyperparameters can be used in the MI kernel matrices to improve the sample suggestion performance. The advantages of the proposed method are demonstrated in a simulation of the 2018 Anchorage, AK, earthquake. It is shown that while the proposed algorithm enables GPR to reach acceptable performance using fewer training data, the computational demand remains lower than the standard local kernels strategy." @default.
- W3165523928 created "2021-06-07" @default.
- W3165523928 creator A5015846787 @default.
- W3165523928 creator A5017079063 @default.
- W3165523928 date "2021-11-01" @default.
- W3165523928 modified "2023-10-16" @default.
- W3165523928 title "Adaptive local kernels formulation of mutual information with application to active post-seismic building damage inference" @default.
- W3165523928 cites W1909636974 @default.
- W3165523928 cites W1983136214 @default.
- W3165523928 cites W1984986918 @default.
- W3165523928 cites W1991906152 @default.
- W3165523928 cites W2003381716 @default.
- W3165523928 cites W2008575214 @default.
- W3165523928 cites W2026780514 @default.
- W3165523928 cites W2027456229 @default.
- W3165523928 cites W2049440516 @default.
- W3165523928 cites W2058124591 @default.
- W3165523928 cites W2080107612 @default.
- W3165523928 cites W2115305054 @default.
- W3165523928 cites W2130175225 @default.
- W3165523928 cites W2139892018 @default.
- W3165523928 cites W2273048275 @default.
- W3165523928 cites W2343514605 @default.
- W3165523928 cites W2467449503 @default.
- W3165523928 cites W2742987337 @default.
- W3165523928 cites W2798992654 @default.
- W3165523928 cites W2804446681 @default.
- W3165523928 cites W2883857478 @default.
- W3165523928 cites W2901196468 @default.
- W3165523928 cites W2903661810 @default.
- W3165523928 cites W2908794637 @default.
- W3165523928 cites W2922266950 @default.
- W3165523928 cites W2962851339 @default.
- W3165523928 cites W2963199592 @default.
- W3165523928 cites W2987991557 @default.
- W3165523928 cites W2999671719 @default.
- W3165523928 cites W3094556617 @default.
- W3165523928 cites W3211394497 @default.
- W3165523928 cites W4255988322 @default.
- W3165523928 doi "https://doi.org/10.1016/j.ress.2021.107915" @default.
- W3165523928 hasPublicationYear "2021" @default.
- W3165523928 type Work @default.
- W3165523928 sameAs 3165523928 @default.
- W3165523928 citedByCount "4" @default.
- W3165523928 countsByYear W31655239282021 @default.
- W3165523928 countsByYear W31655239282022 @default.
- W3165523928 countsByYear W31655239282023 @default.
- W3165523928 crossrefType "journal-article" @default.
- W3165523928 hasAuthorship W3165523928A5015846787 @default.
- W3165523928 hasAuthorship W3165523928A5017079063 @default.
- W3165523928 hasBestOaLocation W31655239281 @default.
- W3165523928 hasConcept C111919701 @default.
- W3165523928 hasConcept C114614502 @default.
- W3165523928 hasConcept C119857082 @default.
- W3165523928 hasConcept C121332964 @default.
- W3165523928 hasConcept C124101348 @default.
- W3165523928 hasConcept C134306372 @default.
- W3165523928 hasConcept C152139883 @default.
- W3165523928 hasConcept C154945302 @default.
- W3165523928 hasConcept C163716315 @default.
- W3165523928 hasConcept C177148314 @default.
- W3165523928 hasConcept C177606310 @default.
- W3165523928 hasConcept C18903297 @default.
- W3165523928 hasConcept C2776214188 @default.
- W3165523928 hasConcept C33923547 @default.
- W3165523928 hasConcept C41008148 @default.
- W3165523928 hasConcept C61326573 @default.
- W3165523928 hasConcept C62520636 @default.
- W3165523928 hasConcept C74193536 @default.
- W3165523928 hasConcept C77967617 @default.
- W3165523928 hasConcept C81692654 @default.
- W3165523928 hasConcept C8642999 @default.
- W3165523928 hasConcept C86803240 @default.
- W3165523928 hasConcept C98045186 @default.
- W3165523928 hasConceptScore W3165523928C111919701 @default.
- W3165523928 hasConceptScore W3165523928C114614502 @default.
- W3165523928 hasConceptScore W3165523928C119857082 @default.
- W3165523928 hasConceptScore W3165523928C121332964 @default.
- W3165523928 hasConceptScore W3165523928C124101348 @default.
- W3165523928 hasConceptScore W3165523928C134306372 @default.
- W3165523928 hasConceptScore W3165523928C152139883 @default.
- W3165523928 hasConceptScore W3165523928C154945302 @default.
- W3165523928 hasConceptScore W3165523928C163716315 @default.
- W3165523928 hasConceptScore W3165523928C177148314 @default.
- W3165523928 hasConceptScore W3165523928C177606310 @default.
- W3165523928 hasConceptScore W3165523928C18903297 @default.
- W3165523928 hasConceptScore W3165523928C2776214188 @default.
- W3165523928 hasConceptScore W3165523928C33923547 @default.
- W3165523928 hasConceptScore W3165523928C41008148 @default.
- W3165523928 hasConceptScore W3165523928C61326573 @default.
- W3165523928 hasConceptScore W3165523928C62520636 @default.
- W3165523928 hasConceptScore W3165523928C74193536 @default.
- W3165523928 hasConceptScore W3165523928C77967617 @default.
- W3165523928 hasConceptScore W3165523928C81692654 @default.
- W3165523928 hasConceptScore W3165523928C8642999 @default.
- W3165523928 hasConceptScore W3165523928C86803240 @default.
- W3165523928 hasConceptScore W3165523928C98045186 @default.
- W3165523928 hasFunder F4320306076 @default.