Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165579152> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3165579152 endingPage "41" @default.
- W3165579152 startingPage "33" @default.
- W3165579152 abstract "Multiple magnetic resonance images of different contrasts are normally acquired for clinical diagnosis. Recently, research has shown that the previously acquired multi-contrast (MC) images of the same patient can be used as anatomical prior to accelerating magnetic resonance imaging (MRI). However, current MC-MRI networks are based on the assumption that the images are perfectly registered, which is rarely the case in real-world applications. In this paper, we propose an end-to-end deep neural network to reconstruct highly accelerated images by exploiting the shareable information from potentially misaligned reference images of an arbitrary contrast. Specifically, a spatial transformation (ST) module is designed and integrated into the reconstruction network to align the pre-acquired reference images with the images to be reconstructed. The misalignment is further alleviated by maximizing the normalized cross-correlation (NCC) between the MC images. The visualization of feature maps demonstrates that the proposed method effectively reduces the misalignment between the images for shareable information extraction when applied to the publicly available brain datasets. Additionally, the experimental results on these datasets show the proposed network allows the robust exploitation of shareable information across the misaligned MC images, leading to improved reconstruction results." @default.
- W3165579152 created "2021-06-07" @default.
- W3165579152 creator A5018477170 @default.
- W3165579152 creator A5019104510 @default.
- W3165579152 creator A5037677450 @default.
- W3165579152 creator A5039207515 @default.
- W3165579152 creator A5041659230 @default.
- W3165579152 creator A5060470951 @default.
- W3165579152 creator A5073240631 @default.
- W3165579152 date "2021-09-01" @default.
- W3165579152 modified "2023-10-13" @default.
- W3165579152 title "Deep unregistered multi-contrast MRI reconstruction" @default.
- W3165579152 cites W1641498739 @default.
- W3165579152 cites W1972898607 @default.
- W3165579152 cites W1977388060 @default.
- W3165579152 cites W2033162169 @default.
- W3165579152 cites W2101675075 @default.
- W3165579152 cites W2109707993 @default.
- W3165579152 cites W2111388536 @default.
- W3165579152 cites W2141168890 @default.
- W3165579152 cites W2191349405 @default.
- W3165579152 cites W2594014149 @default.
- W3165579152 cites W2604388535 @default.
- W3165579152 cites W2608353599 @default.
- W3165579152 cites W2611467245 @default.
- W3165579152 cites W2738302492 @default.
- W3165579152 cites W2751069891 @default.
- W3165579152 cites W2891590469 @default.
- W3165579152 cites W2902828227 @default.
- W3165579152 cites W2964545333 @default.
- W3165579152 cites W2969436289 @default.
- W3165579152 cites W2998376473 @default.
- W3165579152 cites W3001105145 @default.
- W3165579152 cites W3009994569 @default.
- W3165579152 cites W3044508608 @default.
- W3165579152 cites W3100730608 @default.
- W3165579152 cites W3101674918 @default.
- W3165579152 cites W3102018640 @default.
- W3165579152 cites W3104164805 @default.
- W3165579152 cites W3119836047 @default.
- W3165579152 cites W3124596402 @default.
- W3165579152 doi "https://doi.org/10.1016/j.mri.2021.05.005" @default.
- W3165579152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34051290" @default.
- W3165579152 hasPublicationYear "2021" @default.
- W3165579152 type Work @default.
- W3165579152 sameAs 3165579152 @default.
- W3165579152 citedByCount "6" @default.
- W3165579152 countsByYear W31655791522021 @default.
- W3165579152 countsByYear W31655791522022 @default.
- W3165579152 countsByYear W31655791522023 @default.
- W3165579152 crossrefType "journal-article" @default.
- W3165579152 hasAuthorship W3165579152A5018477170 @default.
- W3165579152 hasAuthorship W3165579152A5019104510 @default.
- W3165579152 hasAuthorship W3165579152A5037677450 @default.
- W3165579152 hasAuthorship W3165579152A5039207515 @default.
- W3165579152 hasAuthorship W3165579152A5041659230 @default.
- W3165579152 hasAuthorship W3165579152A5060470951 @default.
- W3165579152 hasAuthorship W3165579152A5073240631 @default.
- W3165579152 hasConcept C154945302 @default.
- W3165579152 hasConcept C2776502983 @default.
- W3165579152 hasConcept C31972630 @default.
- W3165579152 hasConcept C41008148 @default.
- W3165579152 hasConceptScore W3165579152C154945302 @default.
- W3165579152 hasConceptScore W3165579152C2776502983 @default.
- W3165579152 hasConceptScore W3165579152C31972630 @default.
- W3165579152 hasConceptScore W3165579152C41008148 @default.
- W3165579152 hasLocation W31655791521 @default.
- W3165579152 hasOpenAccess W3165579152 @default.
- W3165579152 hasPrimaryLocation W31655791521 @default.
- W3165579152 hasRelatedWork W1891287906 @default.
- W3165579152 hasRelatedWork W1969923398 @default.
- W3165579152 hasRelatedWork W2036807459 @default.
- W3165579152 hasRelatedWork W2058170566 @default.
- W3165579152 hasRelatedWork W2166024367 @default.
- W3165579152 hasRelatedWork W2229312674 @default.
- W3165579152 hasRelatedWork W2755342338 @default.
- W3165579152 hasRelatedWork W2772917594 @default.
- W3165579152 hasRelatedWork W2775347418 @default.
- W3165579152 hasRelatedWork W3116076068 @default.
- W3165579152 hasVolume "81" @default.
- W3165579152 isParatext "false" @default.
- W3165579152 isRetracted "false" @default.
- W3165579152 magId "3165579152" @default.
- W3165579152 workType "article" @default.