Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165593106> ?p ?o ?g. }
- W3165593106 endingPage "118206" @default.
- W3165593106 startingPage "118206" @default.
- W3165593106 abstract "Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well-typically requiring T1-weighted images (e.g., MP-RAGE scans). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing in clinical settings every year. In turn, the inability to quantitatively analyze these scans hinders the adoption of quantitative neuro imaging in healthcare, and also precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in convolutional neural networks (CNNs) are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the specific combination of contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. In this article, we present SynthSR, a method to train a CNN that receives one or more scans with spaced slices, acquired with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, beyond rigid coregistration of the input scans. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution real images of the input contrasts. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at https://github.com/BBillot/SynthSR." @default.
- W3165593106 created "2021-06-07" @default.
- W3165593106 creator A5010066843 @default.
- W3165593106 creator A5018036816 @default.
- W3165593106 creator A5021024047 @default.
- W3165593106 creator A5022799533 @default.
- W3165593106 creator A5033449704 @default.
- W3165593106 creator A5035352293 @default.
- W3165593106 creator A5036774610 @default.
- W3165593106 creator A5047837211 @default.
- W3165593106 creator A5054888342 @default.
- W3165593106 creator A5081763875 @default.
- W3165593106 creator A5089640308 @default.
- W3165593106 date "2021-08-01" @default.
- W3165593106 modified "2023-10-10" @default.
- W3165593106 title "Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast" @default.
- W3165593106 cites W1528488479 @default.
- W3165593106 cites W1885185971 @default.
- W3165593106 cites W1970928383 @default.
- W3165593106 cites W1973637437 @default.
- W3165593106 cites W1988366576 @default.
- W3165593106 cites W2000574253 @default.
- W3165593106 cites W2003863798 @default.
- W3165593106 cites W2004293194 @default.
- W3165593106 cites W2020044743 @default.
- W3165593106 cites W2026752633 @default.
- W3165593106 cites W2028989537 @default.
- W3165593106 cites W2038899746 @default.
- W3165593106 cites W2040975718 @default.
- W3165593106 cites W2049105183 @default.
- W3165593106 cites W2064019305 @default.
- W3165593106 cites W2064530236 @default.
- W3165593106 cites W2089940272 @default.
- W3165593106 cites W2104048700 @default.
- W3165593106 cites W2105552075 @default.
- W3165593106 cites W2107956652 @default.
- W3165593106 cites W2111913931 @default.
- W3165593106 cites W2113916316 @default.
- W3165593106 cites W2115865170 @default.
- W3165593106 cites W2117140276 @default.
- W3165593106 cites W2121014637 @default.
- W3165593106 cites W2127324977 @default.
- W3165593106 cites W2130622075 @default.
- W3165593106 cites W2130686832 @default.
- W3165593106 cites W2133287637 @default.
- W3165593106 cites W2133665775 @default.
- W3165593106 cites W2137072914 @default.
- W3165593106 cites W2140560962 @default.
- W3165593106 cites W2143017382 @default.
- W3165593106 cites W2151721316 @default.
- W3165593106 cites W2155298532 @default.
- W3165593106 cites W2156311276 @default.
- W3165593106 cites W2157466038 @default.
- W3165593106 cites W2161044358 @default.
- W3165593106 cites W2171380313 @default.
- W3165593106 cites W2187351272 @default.
- W3165593106 cites W2208340121 @default.
- W3165593106 cites W2301358467 @default.
- W3165593106 cites W2331918145 @default.
- W3165593106 cites W2345612204 @default.
- W3165593106 cites W2514101822 @default.
- W3165593106 cites W2589647984 @default.
- W3165593106 cites W2591999117 @default.
- W3165593106 cites W2608353599 @default.
- W3165593106 cites W2766851997 @default.
- W3165593106 cites W2767044624 @default.
- W3165593106 cites W2786808285 @default.
- W3165593106 cites W2789713147 @default.
- W3165593106 cites W2794977498 @default.
- W3165593106 cites W2886527657 @default.
- W3165593106 cites W2891590469 @default.
- W3165593106 cites W2901434856 @default.
- W3165593106 cites W2942080485 @default.
- W3165593106 cites W2959938807 @default.
- W3165593106 cites W2963176524 @default.
- W3165593106 cites W2963768110 @default.
- W3165593106 cites W2964302138 @default.
- W3165593106 cites W2977883299 @default.
- W3165593106 cites W2992937964 @default.
- W3165593106 cites W2993515580 @default.
- W3165593106 cites W3003397136 @default.
- W3165593106 cites W3015686011 @default.
- W3165593106 cites W3092596753 @default.
- W3165593106 cites W3104164805 @default.
- W3165593106 cites W4230920194 @default.
- W3165593106 cites W4235770099 @default.
- W3165593106 cites W4241074797 @default.
- W3165593106 doi "https://doi.org/10.1016/j.neuroimage.2021.118206" @default.
- W3165593106 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8354427" @default.
- W3165593106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34048902" @default.
- W3165593106 hasPublicationYear "2021" @default.
- W3165593106 type Work @default.
- W3165593106 sameAs 3165593106 @default.
- W3165593106 citedByCount "43" @default.
- W3165593106 countsByYear W31655931062021 @default.
- W3165593106 countsByYear W31655931062022 @default.
- W3165593106 countsByYear W31655931062023 @default.
- W3165593106 crossrefType "journal-article" @default.