Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165605220> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3165605220 endingPage "101453" @default.
- W3165605220 startingPage "101453" @default.
- W3165605220 abstract "Hardness is a property that prevents forced scraping or surface penetration of material surfaces against deformation. Indeed, some methods in the tradition of forecasting the mechanical properties of the steel used to recommend a new hardening forecast using a profound learning model. More particularly, an Optimized Deep Convolutional Neural Network (DCNN) framework is used that makes the prediction more accurate and precise. The input given to the model is the chemical composition of steel along with the distance from the quenched end, which directly predicts the hardening of steel as the model already knows of it. Moreover, to make the prediction more accurate, this paper aims to make a fine-tuning of Convolutional layers in DCNN. This paper suggests a new hybrid algorithm for optimal tuned, which is then hybridized Sea Lion Optimization (SLNO), Dragonfly Algorithm (DA), and Sea Lion insisted on Dragon Fly Modification (SL-DU). This is an optimal tuning. Finally, the performance of the proposed work is compared and validated over other state-of-the-art models for error measures. Finally, the performance of the adopted system was evaluated compared with other traditional systems and the results were achieved. According to the analysis, the MAE of the pattern used for distance 1.5 was 77.16%, 9.84%, 12.71%, and 23.36% better than regression, MVR, ANN, and CNN." @default.
- W3165605220 created "2021-06-07" @default.
- W3165605220 creator A5031455927 @default.
- W3165605220 creator A5057411698 @default.
- W3165605220 creator A5085663161 @default.
- W3165605220 date "2021-09-01" @default.
- W3165605220 modified "2023-10-06" @default.
- W3165605220 title "Hybrid optimization assisted deep convolutional neural network for hardening prediction in steel" @default.
- W3165605220 cites W1987157747 @default.
- W3165605220 cites W1989025454 @default.
- W3165605220 cites W2020972657 @default.
- W3165605220 cites W2025501135 @default.
- W3165605220 cites W2031993297 @default.
- W3165605220 cites W2074448226 @default.
- W3165605220 cites W2074530757 @default.
- W3165605220 cites W2076669982 @default.
- W3165605220 cites W2107077827 @default.
- W3165605220 cites W2328978579 @default.
- W3165605220 cites W2517227305 @default.
- W3165605220 cites W2610887901 @default.
- W3165605220 cites W2626919545 @default.
- W3165605220 cites W2901554527 @default.
- W3165605220 cites W2907820982 @default.
- W3165605220 cites W2910693158 @default.
- W3165605220 cites W2914983057 @default.
- W3165605220 cites W2920845183 @default.
- W3165605220 cites W2953935048 @default.
- W3165605220 cites W2964162148 @default.
- W3165605220 cites W2972075926 @default.
- W3165605220 cites W3006129002 @default.
- W3165605220 cites W3101287485 @default.
- W3165605220 cites W332441011 @default.
- W3165605220 doi "https://doi.org/10.1016/j.jksus.2021.101453" @default.
- W3165605220 hasPublicationYear "2021" @default.
- W3165605220 type Work @default.
- W3165605220 sameAs 3165605220 @default.
- W3165605220 citedByCount "5" @default.
- W3165605220 countsByYear W31656052202021 @default.
- W3165605220 countsByYear W31656052202022 @default.
- W3165605220 countsByYear W31656052202023 @default.
- W3165605220 crossrefType "journal-article" @default.
- W3165605220 hasAuthorship W3165605220A5031455927 @default.
- W3165605220 hasAuthorship W3165605220A5057411698 @default.
- W3165605220 hasAuthorship W3165605220A5085663161 @default.
- W3165605220 hasBestOaLocation W31656052201 @default.
- W3165605220 hasConcept C108583219 @default.
- W3165605220 hasConcept C11413529 @default.
- W3165605220 hasConcept C126255220 @default.
- W3165605220 hasConcept C154945302 @default.
- W3165605220 hasConcept C159985019 @default.
- W3165605220 hasConcept C167085575 @default.
- W3165605220 hasConcept C192562407 @default.
- W3165605220 hasConcept C2779227376 @default.
- W3165605220 hasConcept C2987595161 @default.
- W3165605220 hasConcept C33923547 @default.
- W3165605220 hasConcept C41008148 @default.
- W3165605220 hasConcept C44255700 @default.
- W3165605220 hasConcept C50644808 @default.
- W3165605220 hasConcept C81363708 @default.
- W3165605220 hasConceptScore W3165605220C108583219 @default.
- W3165605220 hasConceptScore W3165605220C11413529 @default.
- W3165605220 hasConceptScore W3165605220C126255220 @default.
- W3165605220 hasConceptScore W3165605220C154945302 @default.
- W3165605220 hasConceptScore W3165605220C159985019 @default.
- W3165605220 hasConceptScore W3165605220C167085575 @default.
- W3165605220 hasConceptScore W3165605220C192562407 @default.
- W3165605220 hasConceptScore W3165605220C2779227376 @default.
- W3165605220 hasConceptScore W3165605220C2987595161 @default.
- W3165605220 hasConceptScore W3165605220C33923547 @default.
- W3165605220 hasConceptScore W3165605220C41008148 @default.
- W3165605220 hasConceptScore W3165605220C44255700 @default.
- W3165605220 hasConceptScore W3165605220C50644808 @default.
- W3165605220 hasConceptScore W3165605220C81363708 @default.
- W3165605220 hasIssue "6" @default.
- W3165605220 hasLocation W31656052201 @default.
- W3165605220 hasOpenAccess W3165605220 @default.
- W3165605220 hasPrimaryLocation W31656052201 @default.
- W3165605220 hasRelatedWork W2731899572 @default.
- W3165605220 hasRelatedWork W2999805992 @default.
- W3165605220 hasRelatedWork W3011074480 @default.
- W3165605220 hasRelatedWork W3116150086 @default.
- W3165605220 hasRelatedWork W3133861977 @default.
- W3165605220 hasRelatedWork W3192840557 @default.
- W3165605220 hasRelatedWork W4200173597 @default.
- W3165605220 hasRelatedWork W4291897433 @default.
- W3165605220 hasRelatedWork W4312417841 @default.
- W3165605220 hasRelatedWork W4321369474 @default.
- W3165605220 hasVolume "33" @default.
- W3165605220 isParatext "false" @default.
- W3165605220 isRetracted "false" @default.
- W3165605220 magId "3165605220" @default.
- W3165605220 workType "article" @default.