Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165655953> ?p ?o ?g. }
- W3165655953 endingPage "108748" @default.
- W3165655953 startingPage "108748" @default.
- W3165655953 abstract "Omnichannel retailing has changed the purchasing behavior of customers in recent years, especially in online shopping, which has led to higher complexity in supply chain demand forecasting. Nowadays customers buy a variety of products in baskets that do not share similar characteristics and across various channels. In this article, we propose a new approach to forecasting demand, driven by data on customers shopping baskets. Drawing on network graph theory and findings from the marketing literature, we identify for a given product four attributes to promote the connectivity with other products sold together in a basket: degree and strength for cross-categories connection, substitutability and complementarity for within-categories connection. These attributes are used as predictor variables within four proposed methods: an autoregressive integrated moving average model with exogeneous variables (ARIMAX), a linear and a polynomial regression with one lag of sales and a machine learning method. We conduct an empirical investigation using online and physical sales related to an assortment of 24,000 products of a major cosmetics retailer in France. We provide empirical evidence that using the shopping basket data with the proposed forecasting methods improves the forecasting accuracy and the stock control performance in omnichannel retailing. We also show that there is a benefit from joint forecasting of the online and store channels, and a benefit of shared inventory between both channels in terms of shortage reduction." @default.
- W3165655953 created "2021-06-07" @default.
- W3165655953 creator A5000033260 @default.
- W3165655953 creator A5019510194 @default.
- W3165655953 creator A5035951440 @default.
- W3165655953 creator A5073840498 @default.
- W3165655953 date "2023-03-01" @default.
- W3165655953 modified "2023-09-26" @default.
- W3165655953 title "Basket data-driven approach for omnichannel demand forecasting" @default.
- W3165655953 cites W1666631020 @default.
- W3165655953 cites W1965821767 @default.
- W3165655953 cites W1978784367 @default.
- W3165655953 cites W1989787309 @default.
- W3165655953 cites W2007834894 @default.
- W3165655953 cites W2011227258 @default.
- W3165655953 cites W2015071911 @default.
- W3165655953 cites W2016210396 @default.
- W3165655953 cites W2026230535 @default.
- W3165655953 cites W2029471946 @default.
- W3165655953 cites W2040956707 @default.
- W3165655953 cites W2057907828 @default.
- W3165655953 cites W2075373984 @default.
- W3165655953 cites W2095081606 @default.
- W3165655953 cites W2098588523 @default.
- W3165655953 cites W2114733835 @default.
- W3165655953 cites W2129315144 @default.
- W3165655953 cites W2132782512 @default.
- W3165655953 cites W2148606196 @default.
- W3165655953 cites W2150387434 @default.
- W3165655953 cites W2153227754 @default.
- W3165655953 cites W2158978812 @default.
- W3165655953 cites W2166304961 @default.
- W3165655953 cites W2166595855 @default.
- W3165655953 cites W2171915648 @default.
- W3165655953 cites W2178204454 @default.
- W3165655953 cites W2189200475 @default.
- W3165655953 cites W2434225413 @default.
- W3165655953 cites W2437807727 @default.
- W3165655953 cites W2574459737 @default.
- W3165655953 cites W2609405668 @default.
- W3165655953 cites W2756737320 @default.
- W3165655953 cites W2760121323 @default.
- W3165655953 cites W2793507029 @default.
- W3165655953 cites W2793600172 @default.
- W3165655953 cites W2802697587 @default.
- W3165655953 cites W2808879256 @default.
- W3165655953 cites W2891048478 @default.
- W3165655953 cites W2901657898 @default.
- W3165655953 cites W2921478300 @default.
- W3165655953 cites W2925231568 @default.
- W3165655953 cites W2939763583 @default.
- W3165655953 cites W2956195142 @default.
- W3165655953 cites W2999347107 @default.
- W3165655953 cites W3012096460 @default.
- W3165655953 cites W3015969950 @default.
- W3165655953 cites W3016179181 @default.
- W3165655953 cites W3016339129 @default.
- W3165655953 cites W3021709321 @default.
- W3165655953 cites W3092065090 @default.
- W3165655953 cites W3121466407 @default.
- W3165655953 cites W3123100403 @default.
- W3165655953 cites W3123725440 @default.
- W3165655953 cites W3125686817 @default.
- W3165655953 cites W3197545278 @default.
- W3165655953 cites W3205516899 @default.
- W3165655953 cites W2957400481 @default.
- W3165655953 doi "https://doi.org/10.1016/j.ijpe.2022.108748" @default.
- W3165655953 hasPublicationYear "2023" @default.
- W3165655953 type Work @default.
- W3165655953 sameAs 3165655953 @default.
- W3165655953 citedByCount "2" @default.
- W3165655953 countsByYear W31656559532023 @default.
- W3165655953 crossrefType "journal-article" @default.
- W3165655953 hasAuthorship W3165655953A5000033260 @default.
- W3165655953 hasAuthorship W3165655953A5019510194 @default.
- W3165655953 hasAuthorship W3165655953A5035951440 @default.
- W3165655953 hasAuthorship W3165655953A5073840498 @default.
- W3165655953 hasBestOaLocation W31656559532 @default.
- W3165655953 hasConcept C108713360 @default.
- W3165655953 hasConcept C136764020 @default.
- W3165655953 hasConcept C144133560 @default.
- W3165655953 hasConcept C149782125 @default.
- W3165655953 hasConcept C162324750 @default.
- W3165655953 hasConcept C162853370 @default.
- W3165655953 hasConcept C193809577 @default.
- W3165655953 hasConcept C2778813691 @default.
- W3165655953 hasConcept C2780928776 @default.
- W3165655953 hasConcept C33923547 @default.
- W3165655953 hasConcept C37616216 @default.
- W3165655953 hasConcept C41008148 @default.
- W3165655953 hasConcept C42475967 @default.
- W3165655953 hasConcept C50601946 @default.
- W3165655953 hasConceptScore W3165655953C108713360 @default.
- W3165655953 hasConceptScore W3165655953C136764020 @default.
- W3165655953 hasConceptScore W3165655953C144133560 @default.
- W3165655953 hasConceptScore W3165655953C149782125 @default.
- W3165655953 hasConceptScore W3165655953C162324750 @default.
- W3165655953 hasConceptScore W3165655953C162853370 @default.