Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165698934> ?p ?o ?g. }
- W3165698934 abstract "Abstract Background Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. Results Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (− 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (− 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. Conclusions These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response." @default.
- W3165698934 created "2021-06-07" @default.
- W3165698934 creator A5001166254 @default.
- W3165698934 creator A5007216304 @default.
- W3165698934 creator A5007471334 @default.
- W3165698934 creator A5016798848 @default.
- W3165698934 creator A5018947038 @default.
- W3165698934 creator A5027913169 @default.
- W3165698934 creator A5033032790 @default.
- W3165698934 creator A5075261237 @default.
- W3165698934 date "2021-05-22" @default.
- W3165698934 modified "2023-10-17" @default.
- W3165698934 title "Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources" @default.
- W3165698934 cites W1660011402 @default.
- W3165698934 cites W1899532178 @default.
- W3165698934 cites W1957325780 @default.
- W3165698934 cites W1967725111 @default.
- W3165698934 cites W1972718730 @default.
- W3165698934 cites W1988177221 @default.
- W3165698934 cites W1989129683 @default.
- W3165698934 cites W1990205606 @default.
- W3165698934 cites W1996230229 @default.
- W3165698934 cites W2000525306 @default.
- W3165698934 cites W2003432037 @default.
- W3165698934 cites W2003523021 @default.
- W3165698934 cites W2003981623 @default.
- W3165698934 cites W2010364121 @default.
- W3165698934 cites W2016005944 @default.
- W3165698934 cites W2029698213 @default.
- W3165698934 cites W2029709851 @default.
- W3165698934 cites W2034675030 @default.
- W3165698934 cites W2040374805 @default.
- W3165698934 cites W2042705860 @default.
- W3165698934 cites W2045238556 @default.
- W3165698934 cites W2047782093 @default.
- W3165698934 cites W2048803436 @default.
- W3165698934 cites W2055404206 @default.
- W3165698934 cites W2063180700 @default.
- W3165698934 cites W2066720918 @default.
- W3165698934 cites W2073619906 @default.
- W3165698934 cites W2076038891 @default.
- W3165698934 cites W2078790443 @default.
- W3165698934 cites W2082917714 @default.
- W3165698934 cites W2084412368 @default.
- W3165698934 cites W2084793569 @default.
- W3165698934 cites W2086114006 @default.
- W3165698934 cites W2086137541 @default.
- W3165698934 cites W2086951127 @default.
- W3165698934 cites W2089628542 @default.
- W3165698934 cites W2091621675 @default.
- W3165698934 cites W2095781472 @default.
- W3165698934 cites W2096296215 @default.
- W3165698934 cites W2097257992 @default.
- W3165698934 cites W2098570629 @default.
- W3165698934 cites W2101665409 @default.
- W3165698934 cites W2102286460 @default.
- W3165698934 cites W2108975142 @default.
- W3165698934 cites W2118109148 @default.
- W3165698934 cites W2120545471 @default.
- W3165698934 cites W2123077564 @default.
- W3165698934 cites W2125558642 @default.
- W3165698934 cites W2127577473 @default.
- W3165698934 cites W2140519205 @default.
- W3165698934 cites W2146371682 @default.
- W3165698934 cites W2149750593 @default.
- W3165698934 cites W2153969233 @default.
- W3165698934 cites W2154318647 @default.
- W3165698934 cites W2154429475 @default.
- W3165698934 cites W2155425732 @default.
- W3165698934 cites W2156151225 @default.
- W3165698934 cites W2159679199 @default.
- W3165698934 cites W2171202249 @default.
- W3165698934 cites W2209520817 @default.
- W3165698934 cites W2254578977 @default.
- W3165698934 cites W2320425253 @default.
- W3165698934 cites W2332536695 @default.
- W3165698934 cites W2362791120 @default.
- W3165698934 cites W2409264941 @default.
- W3165698934 cites W2463088718 @default.
- W3165698934 cites W2562438459 @default.
- W3165698934 cites W2604466285 @default.
- W3165698934 cites W2605217175 @default.
- W3165698934 cites W2726393862 @default.
- W3165698934 cites W2752377851 @default.
- W3165698934 cites W2754635523 @default.
- W3165698934 cites W2766386390 @default.
- W3165698934 cites W2799550876 @default.
- W3165698934 cites W2800671030 @default.
- W3165698934 cites W2891292806 @default.
- W3165698934 cites W2898289566 @default.
- W3165698934 cites W2899760200 @default.
- W3165698934 cites W2940924589 @default.
- W3165698934 cites W2951952783 @default.
- W3165698934 cites W317911213 @default.
- W3165698934 cites W4247401202 @default.
- W3165698934 doi "https://doi.org/10.1186/s13068-021-01970-6" @default.
- W3165698934 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8141184" @default.
- W3165698934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34022944" @default.
- W3165698934 hasPublicationYear "2021" @default.
- W3165698934 type Work @default.