Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165722042> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3165722042 endingPage "2294" @default.
- W3165722042 startingPage "2283" @default.
- W3165722042 abstract "Abstract In order to improve the accuracy of pulmonary nodules malignancy grading, we propose a method to implement quantitative analysis for lung nodules using computed tomography (CT) signs. Firstly, we construct feature sets of CT signs by combing the radiomics features with the higher‐order features extracted from a convolutional neural network. Secondly, on the basis of the mixed feature set, an evolutionary ensemble learning mechanism is used to generate a classifier to get the quantitative scores for seven lung nodule CT signs. Finally, the scores of seven CT signs are input into a multiclassifier optimized by the differential evolution algorithm to acquire the grade of malignancy. In the experimental study, 2000 lung nodule samples from the LIDC‐IDRI dataset were used to train and test the evolutionary ensemble learner and malignancy classifier. The results show that the recognition accuracy of seven CT signs can reach more than 0.964. Comparison with many typical algorithms, the proposed method not only gets higher accuracy in pulmonary nodules malignancy grading but also can make the result more interpretable." @default.
- W3165722042 created "2021-06-07" @default.
- W3165722042 creator A5002322690 @default.
- W3165722042 creator A5025942924 @default.
- W3165722042 creator A5029615731 @default.
- W3165722042 creator A5064290585 @default.
- W3165722042 creator A5071219434 @default.
- W3165722042 creator A5085426866 @default.
- W3165722042 date "2021-05-20" @default.
- W3165722042 modified "2023-10-16" @default.
- W3165722042 title "A computed tomography signs quantization analysis method for pulmonary nodules malignancy grading" @default.
- W3165722042 cites W1986649315 @default.
- W3165722042 cites W2049013464 @default.
- W3165722042 cites W2049674541 @default.
- W3165722042 cites W2078014989 @default.
- W3165722042 cites W2080882283 @default.
- W3165722042 cites W2101610532 @default.
- W3165722042 cites W2114175038 @default.
- W3165722042 cites W2122336977 @default.
- W3165722042 cites W2129597285 @default.
- W3165722042 cites W2598574140 @default.
- W3165722042 cites W2744583545 @default.
- W3165722042 cites W2762615350 @default.
- W3165722042 cites W2765931871 @default.
- W3165722042 cites W2766535956 @default.
- W3165722042 cites W2767128594 @default.
- W3165722042 cites W2782364997 @default.
- W3165722042 cites W2791187255 @default.
- W3165722042 cites W2801973181 @default.
- W3165722042 cites W2802502226 @default.
- W3165722042 cites W2884008556 @default.
- W3165722042 cites W2886556804 @default.
- W3165722042 cites W2911893844 @default.
- W3165722042 cites W2913042053 @default.
- W3165722042 cites W2913900917 @default.
- W3165722042 cites W2922172225 @default.
- W3165722042 cites W2922373140 @default.
- W3165722042 cites W2957851091 @default.
- W3165722042 cites W2962852641 @default.
- W3165722042 cites W2963313410 @default.
- W3165722042 cites W791362575 @default.
- W3165722042 doi "https://doi.org/10.1002/ima.22605" @default.
- W3165722042 hasPublicationYear "2021" @default.
- W3165722042 type Work @default.
- W3165722042 sameAs 3165722042 @default.
- W3165722042 citedByCount "0" @default.
- W3165722042 crossrefType "journal-article" @default.
- W3165722042 hasAuthorship W3165722042A5002322690 @default.
- W3165722042 hasAuthorship W3165722042A5025942924 @default.
- W3165722042 hasAuthorship W3165722042A5029615731 @default.
- W3165722042 hasAuthorship W3165722042A5064290585 @default.
- W3165722042 hasAuthorship W3165722042A5071219434 @default.
- W3165722042 hasAuthorship W3165722042A5085426866 @default.
- W3165722042 hasConcept C126838900 @default.
- W3165722042 hasConcept C142724271 @default.
- W3165722042 hasConcept C153180895 @default.
- W3165722042 hasConcept C154945302 @default.
- W3165722042 hasConcept C18903297 @default.
- W3165722042 hasConcept C2777286243 @default.
- W3165722042 hasConcept C2779399171 @default.
- W3165722042 hasConcept C41008148 @default.
- W3165722042 hasConcept C544519230 @default.
- W3165722042 hasConcept C71924100 @default.
- W3165722042 hasConcept C81363708 @default.
- W3165722042 hasConcept C86803240 @default.
- W3165722042 hasConcept C95623464 @default.
- W3165722042 hasConceptScore W3165722042C126838900 @default.
- W3165722042 hasConceptScore W3165722042C142724271 @default.
- W3165722042 hasConceptScore W3165722042C153180895 @default.
- W3165722042 hasConceptScore W3165722042C154945302 @default.
- W3165722042 hasConceptScore W3165722042C18903297 @default.
- W3165722042 hasConceptScore W3165722042C2777286243 @default.
- W3165722042 hasConceptScore W3165722042C2779399171 @default.
- W3165722042 hasConceptScore W3165722042C41008148 @default.
- W3165722042 hasConceptScore W3165722042C544519230 @default.
- W3165722042 hasConceptScore W3165722042C71924100 @default.
- W3165722042 hasConceptScore W3165722042C81363708 @default.
- W3165722042 hasConceptScore W3165722042C86803240 @default.
- W3165722042 hasConceptScore W3165722042C95623464 @default.
- W3165722042 hasIssue "4" @default.
- W3165722042 hasLocation W31657220421 @default.
- W3165722042 hasOpenAccess W3165722042 @default.
- W3165722042 hasPrimaryLocation W31657220421 @default.
- W3165722042 hasRelatedWork W2563096758 @default.
- W3165722042 hasRelatedWork W2767651786 @default.
- W3165722042 hasRelatedWork W2912288872 @default.
- W3165722042 hasRelatedWork W2936488316 @default.
- W3165722042 hasRelatedWork W2972035100 @default.
- W3165722042 hasRelatedWork W4225852842 @default.
- W3165722042 hasRelatedWork W4306753247 @default.
- W3165722042 hasRelatedWork W4386053843 @default.
- W3165722042 hasRelatedWork W564581980 @default.
- W3165722042 hasRelatedWork W3158004940 @default.
- W3165722042 hasVolume "31" @default.
- W3165722042 isParatext "false" @default.
- W3165722042 isRetracted "false" @default.
- W3165722042 magId "3165722042" @default.
- W3165722042 workType "article" @default.