Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165763913> ?p ?o ?g. }
- W3165763913 abstract "Abstract Background Tri-axial accelerometers have been used to remotely describe and identify in situ behaviours of a range of animals without requiring direct observations. Datasets collected from these accelerometers (i.e. acceleration, body position) are often large, requiring development of semi-automated analyses to classify behaviours. Marine fishes exhibit many “burst” behaviours with high amplitude accelerations that are difficult to interpret and differentiate. This has constrained the development of accurate automated techniques to identify different “burst” behaviours occurring naturally, where direct observations are not possible. Methods We trained a random forest machine learning algorithm based on 624 h of accelerometer data from six captive yellowtail kingfish during spawning periods. We identified five distinct behaviours (swim, feed, chafe, escape, and courtship), which were used to train the model based on 58 predictive variables. Results Overall accuracy of the model was 94%. Classification of each behavioural class was variable; F 1 scores ranged from 0.48 (chafe) – 0.99 (swim). The model was subsequently applied to accelerometer data from eight free-ranging kingfish, and all behaviour classes described from captive fish were predicted by the model to occur, including 19 events of courtship behaviours ranging from 3 s to 108 min in duration. Conclusion Our findings provide a novel approach of applying a supervised machine learning model on free-ranging animals, which has previously been predominantly constrained to direct observations of behaviours and not predicted from an unseen dataset. Additionally, our findings identify typically ambiguous spawning and courtship behaviours of a large pelagic fish as they naturally occur." @default.
- W3165763913 created "2021-06-07" @default.
- W3165763913 creator A5028878462 @default.
- W3165763913 creator A5051979940 @default.
- W3165763913 creator A5062667343 @default.
- W3165763913 creator A5064330380 @default.
- W3165763913 creator A5065732839 @default.
- W3165763913 creator A5089067181 @default.
- W3165763913 date "2021-05-24" @default.
- W3165763913 modified "2023-10-16" @default.
- W3165763913 title "Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish" @default.
- W3165763913 cites W1484770615 @default.
- W3165763913 cites W1513626006 @default.
- W3165763913 cites W1558093531 @default.
- W3165763913 cites W1893934067 @default.
- W3165763913 cites W1944732173 @default.
- W3165763913 cites W1967986779 @default.
- W3165763913 cites W1970691941 @default.
- W3165763913 cites W1973006013 @default.
- W3165763913 cites W1975825490 @default.
- W3165763913 cites W1976729924 @default.
- W3165763913 cites W1976765705 @default.
- W3165763913 cites W1988755921 @default.
- W3165763913 cites W1997548708 @default.
- W3165763913 cites W1997835635 @default.
- W3165763913 cites W2022459453 @default.
- W3165763913 cites W2023821044 @default.
- W3165763913 cites W2035877237 @default.
- W3165763913 cites W2037632996 @default.
- W3165763913 cites W2040523693 @default.
- W3165763913 cites W2050357895 @default.
- W3165763913 cites W2050365465 @default.
- W3165763913 cites W2057213891 @default.
- W3165763913 cites W2068635129 @default.
- W3165763913 cites W2076599234 @default.
- W3165763913 cites W2079634619 @default.
- W3165763913 cites W2085859061 @default.
- W3165763913 cites W2092715563 @default.
- W3165763913 cites W2108916750 @default.
- W3165763913 cites W2113352715 @default.
- W3165763913 cites W2116900702 @default.
- W3165763913 cites W2117289015 @default.
- W3165763913 cites W2134182643 @default.
- W3165763913 cites W2135021752 @default.
- W3165763913 cites W2136375252 @default.
- W3165763913 cites W2141760295 @default.
- W3165763913 cites W2143092577 @default.
- W3165763913 cites W2149891345 @default.
- W3165763913 cites W2152779085 @default.
- W3165763913 cites W2153584017 @default.
- W3165763913 cites W2157657991 @default.
- W3165763913 cites W2162989219 @default.
- W3165763913 cites W2173422396 @default.
- W3165763913 cites W2278434462 @default.
- W3165763913 cites W2319377716 @default.
- W3165763913 cites W2333327831 @default.
- W3165763913 cites W2413489735 @default.
- W3165763913 cites W2532445215 @default.
- W3165763913 cites W2581974582 @default.
- W3165763913 cites W2599260882 @default.
- W3165763913 cites W2605824147 @default.
- W3165763913 cites W2791893104 @default.
- W3165763913 cites W2883646851 @default.
- W3165763913 cites W2897496500 @default.
- W3165763913 cites W2898009441 @default.
- W3165763913 cites W2898173717 @default.
- W3165763913 cites W2911964244 @default.
- W3165763913 cites W2916612366 @default.
- W3165763913 cites W3026962476 @default.
- W3165763913 cites W3112588090 @default.
- W3165763913 doi "https://doi.org/10.1186/s40462-021-00248-8" @default.
- W3165763913 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8145823" @default.
- W3165763913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34030744" @default.
- W3165763913 hasPublicationYear "2021" @default.
- W3165763913 type Work @default.
- W3165763913 sameAs 3165763913 @default.
- W3165763913 citedByCount "9" @default.
- W3165763913 countsByYear W31657639132021 @default.
- W3165763913 countsByYear W31657639132022 @default.
- W3165763913 countsByYear W31657639132023 @default.
- W3165763913 crossrefType "journal-article" @default.
- W3165763913 hasAuthorship W3165763913A5028878462 @default.
- W3165763913 hasAuthorship W3165763913A5051979940 @default.
- W3165763913 hasAuthorship W3165763913A5062667343 @default.
- W3165763913 hasAuthorship W3165763913A5064330380 @default.
- W3165763913 hasAuthorship W3165763913A5065732839 @default.
- W3165763913 hasAuthorship W3165763913A5089067181 @default.
- W3165763913 hasBestOaLocation W31657639131 @default.
- W3165763913 hasConcept C111919701 @default.
- W3165763913 hasConcept C112758219 @default.
- W3165763913 hasConcept C115051666 @default.
- W3165763913 hasConcept C117896860 @default.
- W3165763913 hasConcept C119857082 @default.
- W3165763913 hasConcept C121332964 @default.
- W3165763913 hasConcept C154945302 @default.
- W3165763913 hasConcept C18903297 @default.
- W3165763913 hasConcept C24890656 @default.
- W3165763913 hasConcept C2776453541 @default.
- W3165763913 hasConcept C2909208804 @default.
- W3165763913 hasConcept C2992994097 @default.