Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165871590> ?p ?o ?g. }
- W3165871590 abstract "Abstract Early detection of Alzheimer’s Disease (AD) is essential for developing effective treatments. Neuroimaging techniques like Magnetic Resonance Imaging (MRI) have the potential to detect brain changes before symptoms emerge. Structural MRI can detect atrophy related to AD, but it is possible that functional changes are observed even earlier. We therefore examined the potential of Magnetoencephalography (MEG) to detect differences in functional brain activity in people with Mild Cognitive Impairment (MCI) – a state at risk of early AD. We introduce a framework for multimodal combination to ask whether MEG data from a resting-state provides complementary information beyond structural MRI data in the classification of MCI versus controls. More specifically, we used multi-kernel learning of support vector machines to classify 163 MCI cases versus 144 healthy elderly controls from the BioFIND dataset. When using the covariance of planar gradiometer data in the low Gamma range (30-48Hz), we found that adding a MEG kernel improved classification accuracy above kernels that captured several potential confounds (e.g., age, education, time-of-day, head motion). However accuracy using MEG alone (67%) was worse than MRI alone (72%). When simply concatenating (normalized) features from MEG and MRI into one kernel (early combination), there was no advantage of combining MEG with MRI versus MRI alone. When combining kernels of modality-specific features (intermediate combination), there was an improvement in multimodal classification to 75%. The biggest multimodal improvement however occurred when we combined kernels from the predictions of modality-specific classifiers (late combination), which achieved 78% accuracy (a reliable improvement in terms of permutation testing). We also explored other MEG features, such as the variance versus covariance of magnetometer versus planar gradiometer data within each of 6 frequency bands (delta, theta, alpha, beta, low gamma or high gamma), and found that they generally provided complementary information for classification above MRI, provided the frequency band was beta or higher. We conclude that high frequency information in MEG can improve on MRI-based classification of mild cognitive impairment." @default.
- W3165871590 created "2021-06-07" @default.
- W3165871590 creator A5001157606 @default.
- W3165871590 creator A5025647319 @default.
- W3165871590 creator A5089270915 @default.
- W3165871590 date "2021-05-22" @default.
- W3165871590 modified "2023-10-16" @default.
- W3165871590 title "Late Combination shows that MEG adds to MRI in classifying MCI versus Controls" @default.
- W3165871590 cites W1097741600 @default.
- W3165871590 cites W1510073064 @default.
- W3165871590 cites W1514399733 @default.
- W3165871590 cites W1560724230 @default.
- W3165871590 cites W1563088657 @default.
- W3165871590 cites W1589522534 @default.
- W3165871590 cites W1964625192 @default.
- W3165871590 cites W1983493842 @default.
- W3165871590 cites W1993571512 @default.
- W3165871590 cites W2003038500 @default.
- W3165871590 cites W2017926800 @default.
- W3165871590 cites W2019373590 @default.
- W3165871590 cites W2038003677 @default.
- W3165871590 cites W2040412343 @default.
- W3165871590 cites W2041537566 @default.
- W3165871590 cites W2041987394 @default.
- W3165871590 cites W2044030624 @default.
- W3165871590 cites W2055186021 @default.
- W3165871590 cites W2058226627 @default.
- W3165871590 cites W2060166505 @default.
- W3165871590 cites W2069175984 @default.
- W3165871590 cites W2072632178 @default.
- W3165871590 cites W2088141319 @default.
- W3165871590 cites W2095491050 @default.
- W3165871590 cites W2111710089 @default.
- W3165871590 cites W2119848633 @default.
- W3165871590 cites W2124350171 @default.
- W3165871590 cites W2130622075 @default.
- W3165871590 cites W2133466034 @default.
- W3165871590 cites W2146089088 @default.
- W3165871590 cites W2155298532 @default.
- W3165871590 cites W2164099477 @default.
- W3165871590 cites W2184204734 @default.
- W3165871590 cites W2281498324 @default.
- W3165871590 cites W2305231297 @default.
- W3165871590 cites W2309442902 @default.
- W3165871590 cites W2555008851 @default.
- W3165871590 cites W2582524520 @default.
- W3165871590 cites W2590328111 @default.
- W3165871590 cites W2608642452 @default.
- W3165871590 cites W2738775733 @default.
- W3165871590 cites W2738940817 @default.
- W3165871590 cites W2776072295 @default.
- W3165871590 cites W2787894218 @default.
- W3165871590 cites W2790598060 @default.
- W3165871590 cites W28412257 @default.
- W3165871590 cites W2886431190 @default.
- W3165871590 cites W2896204498 @default.
- W3165871590 cites W2901050968 @default.
- W3165871590 cites W2905035821 @default.
- W3165871590 cites W2912108320 @default.
- W3165871590 cites W2912389312 @default.
- W3165871590 cites W2943815649 @default.
- W3165871590 cites W2946904901 @default.
- W3165871590 cites W2949222200 @default.
- W3165871590 cites W2991135406 @default.
- W3165871590 cites W3016025808 @default.
- W3165871590 cites W3027507201 @default.
- W3165871590 cites W3027718029 @default.
- W3165871590 cites W3029573260 @default.
- W3165871590 cites W3049771035 @default.
- W3165871590 cites W3111310056 @default.
- W3165871590 cites W3163139361 @default.
- W3165871590 cites W4238992175 @default.
- W3165871590 cites W4248018214 @default.
- W3165871590 cites W4251404648 @default.
- W3165871590 cites W97601513 @default.
- W3165871590 doi "https://doi.org/10.1101/2021.05.20.21257522" @default.
- W3165871590 hasPublicationYear "2021" @default.
- W3165871590 type Work @default.
- W3165871590 sameAs 3165871590 @default.
- W3165871590 citedByCount "0" @default.
- W3165871590 crossrefType "posted-content" @default.
- W3165871590 hasAuthorship W3165871590A5001157606 @default.
- W3165871590 hasAuthorship W3165871590A5025647319 @default.
- W3165871590 hasAuthorship W3165871590A5089270915 @default.
- W3165871590 hasBestOaLocation W31658715901 @default.
- W3165871590 hasConcept C12267149 @default.
- W3165871590 hasConcept C126838900 @default.
- W3165871590 hasConcept C142724271 @default.
- W3165871590 hasConcept C143409427 @default.
- W3165871590 hasConcept C153180895 @default.
- W3165871590 hasConcept C154945302 @default.
- W3165871590 hasConcept C15744967 @default.
- W3165871590 hasConcept C169760540 @default.
- W3165871590 hasConcept C169900460 @default.
- W3165871590 hasConcept C2780226545 @default.
- W3165871590 hasConcept C2781172350 @default.
- W3165871590 hasConcept C2984915365 @default.
- W3165871590 hasConcept C41008148 @default.
- W3165871590 hasConcept C522805319 @default.
- W3165871590 hasConcept C556910895 @default.