Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165883423> ?p ?o ?g. }
- W3165883423 abstract "In the past decades, genomic prediction has had a large impact on plant breeding. Given the current advances of high-throughput phenotyping and sequencing technologies, it is increasingly common to observe a large number of traits, in addition to the target trait of interest. This raises the important question whether these additional or “secondary” traits can be used to improve genomic prediction for the target trait. With only a small number of secondary traits, this is known to be the case, given sufficiently high heritabilities and genetic correlations. Here we focus on the more challenging situation with a large number of secondary traits, which is increasingly common since the arrival of high-throughput phenotyping. In this case, secondary traits are usually incorporated through additional relatedness matrices. This approach is however infeasible when secondary traits are not measured on the test set, and cannot distinguish between genetic and non-genetic correlations. An alternative direction is to extend the classical selection indices using penalized regression. So far, penalized selection indices have not been applied in a genomic prediction setting, and require plot-level data in order to reliably estimate genetic correlations. Here we aim to overcome these limitations, using two novel approaches. Our first approach relies on a dimension reduction of the secondary traits, using either penalized regression or random forests (LS-BLUP/RF-BLUP). We then compute the bivariate GBLUP with the dimension reduction as secondary trait. For simulated data (with available plot-level data), we also use bivariate GBLUP with the penalized selection index as secondary trait (SI-BLUP). In our second approach (GM-BLUP), we follow existing multi-kernel methods but replace secondary traits by their genomic predictions, with the advantage that genomic prediction is also possible when secondary traits are only measured on the training set. For most of our simulated data, SI-BLUP was most accurate, often closely followed by RF-BLUP or LS-BLUP. In real datasets, involving metabolites in Arabidopsis and transcriptomics in maize, no method could substantially improve over univariate prediction when secondary traits were only available on the training set. LS-BLUP and RF-BLUP were most accurate when secondary traits were available also for the test set." @default.
- W3165883423 created "2021-06-07" @default.
- W3165883423 creator A5003347503 @default.
- W3165883423 creator A5034288922 @default.
- W3165883423 creator A5034643042 @default.
- W3165883423 creator A5055728337 @default.
- W3165883423 date "2021-05-24" @default.
- W3165883423 modified "2023-09-26" @default.
- W3165883423 title "Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes" @default.
- W3165883423 cites W1813732089 @default.
- W3165883423 cites W1881929920 @default.
- W3165883423 cites W1928998639 @default.
- W3165883423 cites W1952660301 @default.
- W3165883423 cites W2008183088 @default.
- W3165883423 cites W2019961888 @default.
- W3165883423 cites W2026926325 @default.
- W3165883423 cites W2030444684 @default.
- W3165883423 cites W2033670977 @default.
- W3165883423 cites W2148985208 @default.
- W3165883423 cites W2154560360 @default.
- W3165883423 cites W2246412244 @default.
- W3165883423 cites W2414852797 @default.
- W3165883423 cites W2434319803 @default.
- W3165883423 cites W2529193769 @default.
- W3165883423 cites W2651429161 @default.
- W3165883423 cites W2759689247 @default.
- W3165883423 cites W2785291720 @default.
- W3165883423 cites W2789833233 @default.
- W3165883423 cites W2917495235 @default.
- W3165883423 cites W2937611850 @default.
- W3165883423 cites W2945720445 @default.
- W3165883423 cites W2961752004 @default.
- W3165883423 cites W2963054928 @default.
- W3165883423 cites W2973029867 @default.
- W3165883423 cites W2973065284 @default.
- W3165883423 cites W2981528944 @default.
- W3165883423 cites W2995831454 @default.
- W3165883423 cites W3002058427 @default.
- W3165883423 cites W3004741665 @default.
- W3165883423 cites W3024112412 @default.
- W3165883423 cites W3098635105 @default.
- W3165883423 cites W4294541781 @default.
- W3165883423 doi "https://doi.org/10.3389/fgene.2021.667358" @default.
- W3165883423 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8181460" @default.
- W3165883423 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34108993" @default.
- W3165883423 hasPublicationYear "2021" @default.
- W3165883423 type Work @default.
- W3165883423 sameAs 3165883423 @default.
- W3165883423 citedByCount "3" @default.
- W3165883423 countsByYear W31658834232023 @default.
- W3165883423 crossrefType "journal-article" @default.
- W3165883423 hasAuthorship W3165883423A5003347503 @default.
- W3165883423 hasAuthorship W3165883423A5034288922 @default.
- W3165883423 hasAuthorship W3165883423A5034643042 @default.
- W3165883423 hasAuthorship W3165883423A5055728337 @default.
- W3165883423 hasBestOaLocation W31658834231 @default.
- W3165883423 hasConcept C103545067 @default.
- W3165883423 hasConcept C105795698 @default.
- W3165883423 hasConcept C106934330 @default.
- W3165883423 hasConcept C119857082 @default.
- W3165883423 hasConcept C136764020 @default.
- W3165883423 hasConcept C199360897 @default.
- W3165883423 hasConcept C33923547 @default.
- W3165883423 hasConcept C37616216 @default.
- W3165883423 hasConcept C41008148 @default.
- W3165883423 hasConcept C64341305 @default.
- W3165883423 hasConcept C81917197 @default.
- W3165883423 hasConcept C83546350 @default.
- W3165883423 hasConcept C86803240 @default.
- W3165883423 hasConceptScore W3165883423C103545067 @default.
- W3165883423 hasConceptScore W3165883423C105795698 @default.
- W3165883423 hasConceptScore W3165883423C106934330 @default.
- W3165883423 hasConceptScore W3165883423C119857082 @default.
- W3165883423 hasConceptScore W3165883423C136764020 @default.
- W3165883423 hasConceptScore W3165883423C199360897 @default.
- W3165883423 hasConceptScore W3165883423C33923547 @default.
- W3165883423 hasConceptScore W3165883423C37616216 @default.
- W3165883423 hasConceptScore W3165883423C41008148 @default.
- W3165883423 hasConceptScore W3165883423C64341305 @default.
- W3165883423 hasConceptScore W3165883423C81917197 @default.
- W3165883423 hasConceptScore W3165883423C83546350 @default.
- W3165883423 hasConceptScore W3165883423C86803240 @default.
- W3165883423 hasLocation W31658834231 @default.
- W3165883423 hasLocation W31658834232 @default.
- W3165883423 hasOpenAccess W3165883423 @default.
- W3165883423 hasPrimaryLocation W31658834231 @default.
- W3165883423 hasRelatedWork W1808093461 @default.
- W3165883423 hasRelatedWork W2033398555 @default.
- W3165883423 hasRelatedWork W2053995684 @default.
- W3165883423 hasRelatedWork W2084076990 @default.
- W3165883423 hasRelatedWork W2089666919 @default.
- W3165883423 hasRelatedWork W2125459357 @default.
- W3165883423 hasRelatedWork W2161548341 @default.
- W3165883423 hasRelatedWork W2260983608 @default.
- W3165883423 hasRelatedWork W4206312279 @default.
- W3165883423 hasRelatedWork W4283749466 @default.
- W3165883423 hasVolume "12" @default.
- W3165883423 isParatext "false" @default.
- W3165883423 isRetracted "false" @default.
- W3165883423 magId "3165883423" @default.