Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165971529> ?p ?o ?g. }
- W3165971529 endingPage "1915" @default.
- W3165971529 startingPage "1904" @default.
- W3165971529 abstract "The purpose of this study was to identify whether machine learning from processing of continuous wave transforms (CWTs) to provide an energy waveform electrocardiogram (ewECG) could be integrated with echocardiographic assessment of subclinical systolic and diastolic left ventricular dysfunction (LVD).Asymptomatic LVD has management implications, but routine echocardiography is not undertaken in subjects at risk of heart failure. Signal processing of the surface ECG with the use of CWT can identify abnormal myocardial relaxation.EwECG and echocardiography were undertaken in 398 participants at risk of heart failure (HF). Reduced global longitudinal strain (GLS ≤16%)), diastolic abnormalities (E/e' >15, left atrial enlargement with E/e' >10 or impaired relaxation) or LV hypertrophy defined LVD. EwECG feature selection and supervised machine-learning by random forest (RF) classifier was undertaken with 643 CWT-derived features and the ARIC (Atherosclerosis Risk In Communities) heart failure risk score.The ARIC score and 18 CWT features were selected to build a RF predictive model for LVD in a training dataset (n = 287; 60% female, median age 71 [interquartile range: 68 to 74] years). Model performance was tested in an independent group (n = 111; 49% female, median age 61 years [59 to 66 years]), demonstrating 85% sensitivity and 72% specificity (area under the receiver-operating characteristic curve [AUC]: 0.83; 95% confidence interval [CI]: 0.74 to 0.92). With ARIC score removed, sensitivity was 88% and specificity, 70% (AUC: 0.78; 95% CI: 0.70 to 0.86). RF models for reduced GLS and diastolic abnormalities including similar features had sensitivities that were unsuitable for screening. Conventional candidates for LVD screening (ARIC score, N-terminal pro-B-type natriuretic peptide, and standard automated ECG analysis) had inferior discriminative ability. Integration of ewECG in screening of people at risk of HF would reduce need for echocardiography by 45% while missing 12% of LVD cases.Machine learning applied to ewECG is a sensitive screening test for LVD, and its integration into screening of patients at risk for HF would reduce the number of echocardiograms by almost one-half." @default.
- W3165971529 created "2021-06-22" @default.
- W3165971529 creator A5001797627 @default.
- W3165971529 creator A5074267679 @default.
- W3165971529 creator A5082115800 @default.
- W3165971529 creator A5083171777 @default.
- W3165971529 creator A5086934416 @default.
- W3165971529 creator A5091903225 @default.
- W3165971529 date "2021-10-01" @default.
- W3165971529 modified "2023-10-10" @default.
- W3165971529 title "Machine Learning of ECG Waveforms to Improve Selection for Testing for Asymptomatic Left Ventricular Dysfunction" @default.
- W3165971529 cites W1816485900 @default.
- W3165971529 cites W1964816788 @default.
- W3165971529 cites W1981469149 @default.
- W3165971529 cites W1989500574 @default.
- W3165971529 cites W1990479835 @default.
- W3165971529 cites W2014647903 @default.
- W3165971529 cites W2017086716 @default.
- W3165971529 cites W2033969839 @default.
- W3165971529 cites W2055078469 @default.
- W3165971529 cites W2068613600 @default.
- W3165971529 cites W2073561000 @default.
- W3165971529 cites W2074933207 @default.
- W3165971529 cites W2081311610 @default.
- W3165971529 cites W2098766590 @default.
- W3165971529 cites W2112316706 @default.
- W3165971529 cites W2115340664 @default.
- W3165971529 cites W2127017228 @default.
- W3165971529 cites W21478844 @default.
- W3165971529 cites W2168700427 @default.
- W3165971529 cites W2170763117 @default.
- W3165971529 cites W2233994015 @default.
- W3165971529 cites W2313960840 @default.
- W3165971529 cites W2343158650 @default.
- W3165971529 cites W2469805673 @default.
- W3165971529 cites W2554655675 @default.
- W3165971529 cites W2592722173 @default.
- W3165971529 cites W2796979148 @default.
- W3165971529 cites W2804407635 @default.
- W3165971529 cites W2893429952 @default.
- W3165971529 cites W2901226889 @default.
- W3165971529 cites W3066799101 @default.
- W3165971529 cites W3080956484 @default.
- W3165971529 cites W4206632929 @default.
- W3165971529 cites W50284947 @default.
- W3165971529 doi "https://doi.org/10.1016/j.jcmg.2021.04.020" @default.
- W3165971529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34147443" @default.
- W3165971529 hasPublicationYear "2021" @default.
- W3165971529 type Work @default.
- W3165971529 sameAs 3165971529 @default.
- W3165971529 citedByCount "16" @default.
- W3165971529 countsByYear W31659715292021 @default.
- W3165971529 countsByYear W31659715292022 @default.
- W3165971529 countsByYear W31659715292023 @default.
- W3165971529 crossrefType "journal-article" @default.
- W3165971529 hasAuthorship W3165971529A5001797627 @default.
- W3165971529 hasAuthorship W3165971529A5074267679 @default.
- W3165971529 hasAuthorship W3165971529A5082115800 @default.
- W3165971529 hasAuthorship W3165971529A5083171777 @default.
- W3165971529 hasAuthorship W3165971529A5086934416 @default.
- W3165971529 hasAuthorship W3165971529A5091903225 @default.
- W3165971529 hasBestOaLocation W31659715291 @default.
- W3165971529 hasConcept C113280763 @default.
- W3165971529 hasConcept C119060515 @default.
- W3165971529 hasConcept C126322002 @default.
- W3165971529 hasConcept C164705383 @default.
- W3165971529 hasConcept C2776002628 @default.
- W3165971529 hasConcept C2777910003 @default.
- W3165971529 hasConcept C2778198053 @default.
- W3165971529 hasConcept C44249647 @default.
- W3165971529 hasConcept C57900726 @default.
- W3165971529 hasConcept C58471807 @default.
- W3165971529 hasConcept C71924100 @default.
- W3165971529 hasConcept C76318530 @default.
- W3165971529 hasConcept C84393581 @default.
- W3165971529 hasConceptScore W3165971529C113280763 @default.
- W3165971529 hasConceptScore W3165971529C119060515 @default.
- W3165971529 hasConceptScore W3165971529C126322002 @default.
- W3165971529 hasConceptScore W3165971529C164705383 @default.
- W3165971529 hasConceptScore W3165971529C2776002628 @default.
- W3165971529 hasConceptScore W3165971529C2777910003 @default.
- W3165971529 hasConceptScore W3165971529C2778198053 @default.
- W3165971529 hasConceptScore W3165971529C44249647 @default.
- W3165971529 hasConceptScore W3165971529C57900726 @default.
- W3165971529 hasConceptScore W3165971529C58471807 @default.
- W3165971529 hasConceptScore W3165971529C71924100 @default.
- W3165971529 hasConceptScore W3165971529C76318530 @default.
- W3165971529 hasConceptScore W3165971529C84393581 @default.
- W3165971529 hasFunder F4320320458 @default.
- W3165971529 hasFunder F4320320971 @default.
- W3165971529 hasFunder F4320328583 @default.
- W3165971529 hasFunder F4320334705 @default.
- W3165971529 hasIssue "10" @default.
- W3165971529 hasLocation W31659715291 @default.
- W3165971529 hasLocation W31659715292 @default.
- W3165971529 hasOpenAccess W3165971529 @default.
- W3165971529 hasPrimaryLocation W31659715291 @default.
- W3165971529 hasRelatedWork W1964205598 @default.