Matches in SemOpenAlex for { <https://semopenalex.org/work/W3165977014> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3165977014 abstract "Abstract In Coronavirus disease 2019 (COVID-19), early identification of patients with a high risk of mortality can significantly improve triage, bed allocation, timely management, and possibly, outcome. The study objective is to develop and validate individualized mortality risk scores based on the anonymized clinical and laboratory data at admission and determine the probability of Deaths at 7 and 28 days. Data of 1393 admitted patients (Expired—8.54%) was collected from six Apollo Hospital centers (from April to July 2020) using a standardized template and electronic medical records. 63 Clinical and Laboratory parameters were studied based on the patient’s initial clinical state at admission and laboratory parameters within the first 24 h. The Machine Learning (ML) modelling was performed using eXtreme Gradient Boosting (XGB) Algorithm. ‘Time to event’ using Cox Proportional Hazard Model was used and combined with XGB Algorithm. The prospective validation cohort was selected of 977 patients (Expired—8.3%) from six centers from July to October 2020. The Clinical API for the Algorithm is http://20.44.39.47/covid19v2/page1.php being used prospectively. Out of the 63 clinical and laboratory parameters, Age [adjusted hazard ratio (HR) 2.31; 95% CI 1.52–3.53], Male Gender (HR 1.72, 95% CI 1.06–2.85), Respiratory Distress (HR 1.79, 95% CI 1.32–2.53), Diabetes Mellitus (HR 1.21, 95% CI 0.83–1.77), Chronic Kidney Disease (HR 3.04, 95% CI 1.72–5.38), Coronary Artery Disease (HR 1.56, 95% CI − 0.91 to 2.69), respiratory rate > 24/min (HR 1.54, 95% CI 1.03–2.3), oxygen saturation below 90% (HR 2.84, 95% CI 1.87–4.3), Lymphocyte% in DLC (HR 1.99, 95% CI 1.23–2.32), INR (HR 1.71, 95% CI 1.31–2.13), LDH (HR 4.02, 95% CI 2.66–6.07) and Ferritin (HR 2.48, 95% CI 1.32–4.74) were found to be significant. The performance parameters of the current model is at AUC ROC Score of 0.8685 and Accuracy Score of 96.89. The validation cohort had the AUC of 0.782 and Accuracy of 0.93. The model for Mortality Risk Prediction provides insight into the COVID Clinical and Laboratory Parameters at admission. It is one of the early studies, reflecting on ‘time to event’ at the admission, accurately predicting patient outcomes." @default.
- W3165977014 created "2021-06-22" @default.
- W3165977014 creator A5012150734 @default.
- W3165977014 creator A5015920896 @default.
- W3165977014 creator A5018795245 @default.
- W3165977014 creator A5020308795 @default.
- W3165977014 creator A5032357527 @default.
- W3165977014 creator A5063203210 @default.
- W3165977014 creator A5064739238 @default.
- W3165977014 creator A5085577982 @default.
- W3165977014 date "2021-06-17" @default.
- W3165977014 modified "2023-10-17" @default.
- W3165977014 title "Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)" @default.
- W3165977014 cites W2897124762 @default.
- W3165977014 cites W3010455226 @default.
- W3165977014 cites W3013758358 @default.
- W3165977014 cites W3014789701 @default.
- W3165977014 cites W3021033505 @default.
- W3165977014 cites W3024853795 @default.
- W3165977014 cites W3037780771 @default.
- W3165977014 cites W3042100171 @default.
- W3165977014 cites W3043773740 @default.
- W3165977014 cites W3086652928 @default.
- W3165977014 cites W3088317809 @default.
- W3165977014 cites W3088658816 @default.
- W3165977014 cites W3089218403 @default.
- W3165977014 cites W3102599481 @default.
- W3165977014 cites W3104041940 @default.
- W3165977014 cites W3106803324 @default.
- W3165977014 cites W3106913542 @default.
- W3165977014 cites W3110738325 @default.
- W3165977014 cites W3112500788 @default.
- W3165977014 cites W3113005448 @default.
- W3165977014 cites W3113930329 @default.
- W3165977014 cites W3115081928 @default.
- W3165977014 cites W4233026002 @default.
- W3165977014 doi "https://doi.org/10.1038/s41598-021-92146-7" @default.
- W3165977014 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8211710" @default.
- W3165977014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34140592" @default.
- W3165977014 hasPublicationYear "2021" @default.
- W3165977014 type Work @default.
- W3165977014 sameAs 3165977014 @default.
- W3165977014 citedByCount "38" @default.
- W3165977014 countsByYear W31659770142021 @default.
- W3165977014 countsByYear W31659770142022 @default.
- W3165977014 countsByYear W31659770142023 @default.
- W3165977014 crossrefType "journal-article" @default.
- W3165977014 hasAuthorship W3165977014A5012150734 @default.
- W3165977014 hasAuthorship W3165977014A5015920896 @default.
- W3165977014 hasAuthorship W3165977014A5018795245 @default.
- W3165977014 hasAuthorship W3165977014A5020308795 @default.
- W3165977014 hasAuthorship W3165977014A5032357527 @default.
- W3165977014 hasAuthorship W3165977014A5063203210 @default.
- W3165977014 hasAuthorship W3165977014A5064739238 @default.
- W3165977014 hasAuthorship W3165977014A5085577982 @default.
- W3165977014 hasBestOaLocation W31659770141 @default.
- W3165977014 hasConcept C126322002 @default.
- W3165977014 hasConcept C134018914 @default.
- W3165977014 hasConcept C188816634 @default.
- W3165977014 hasConcept C194828623 @default.
- W3165977014 hasConcept C195910791 @default.
- W3165977014 hasConcept C207103383 @default.
- W3165977014 hasConcept C2777120189 @default.
- W3165977014 hasConcept C44249647 @default.
- W3165977014 hasConcept C50382708 @default.
- W3165977014 hasConcept C555293320 @default.
- W3165977014 hasConcept C71924100 @default.
- W3165977014 hasConceptScore W3165977014C126322002 @default.
- W3165977014 hasConceptScore W3165977014C134018914 @default.
- W3165977014 hasConceptScore W3165977014C188816634 @default.
- W3165977014 hasConceptScore W3165977014C194828623 @default.
- W3165977014 hasConceptScore W3165977014C195910791 @default.
- W3165977014 hasConceptScore W3165977014C207103383 @default.
- W3165977014 hasConceptScore W3165977014C2777120189 @default.
- W3165977014 hasConceptScore W3165977014C44249647 @default.
- W3165977014 hasConceptScore W3165977014C50382708 @default.
- W3165977014 hasConceptScore W3165977014C555293320 @default.
- W3165977014 hasConceptScore W3165977014C71924100 @default.
- W3165977014 hasIssue "1" @default.
- W3165977014 hasLocation W31659770141 @default.
- W3165977014 hasLocation W31659770142 @default.
- W3165977014 hasOpenAccess W3165977014 @default.
- W3165977014 hasPrimaryLocation W31659770141 @default.
- W3165977014 hasRelatedWork W1727188710 @default.
- W3165977014 hasRelatedWork W2088206352 @default.
- W3165977014 hasRelatedWork W2095526866 @default.
- W3165977014 hasRelatedWork W2119154902 @default.
- W3165977014 hasRelatedWork W2133235702 @default.
- W3165977014 hasRelatedWork W2135028155 @default.
- W3165977014 hasRelatedWork W2203903734 @default.
- W3165977014 hasRelatedWork W2904476754 @default.
- W3165977014 hasRelatedWork W2917746345 @default.
- W3165977014 hasRelatedWork W4376871959 @default.
- W3165977014 hasVolume "11" @default.
- W3165977014 isParatext "false" @default.
- W3165977014 isRetracted "false" @default.
- W3165977014 magId "3165977014" @default.
- W3165977014 workType "article" @default.