Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166105967> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3166105967 endingPage "109068" @default.
- W3166105967 startingPage "109068" @default.
- W3166105967 abstract "Production data analysis for low permeability shale reservoirs is crucial in characterizing flow regimes and reservoir properties, and the forecasting of production is essential for portfolio and reservoir management. However, traditional methods have failed due to incorrect physics or complicated convolution from the well control history. In this research, we provide a physics-assisted analytics workflow using Laplacian Eigenmaps Coupled Echo-State Network (LEESN) to facilitate and accelerate the analysis of noisy historical production data. Pressure-rate deconvolution is an ill-posed, complex time-series problem. When using the traditional Echo-State Network (ESN), the number of training sets is less than the number of neurons. To solve this problem, we apply LEESN to first deconvolve noisy variable-pressure variable-rate histories into smooth constant-pressure rate responses. The physics-based training features and training algorithm provide additional benefits in addition to the analytic approach by honoring transient flow physics. After training, the constant-pressure rate response can be predicted and used for reservoir characterization, and the trained model could be further used for production and EUR forecasting through long-term rate predictions to the economic limit. The proposed workflow was first validated by synthetic cases where the production data were obtained through simulation. The short-term flow rate history was obtained by specifying highly variable controlling pressures. We also added artificial white Gaussian noise to mimic measured signals collected in the field and input this information into LEESN for deconvolution. The constant-pressure rate response was generated after training to determine flow regimes and properties such as permeability using a traditional transient testing specialized plot. All outcomes from the analytics approach were validated by comparison against the input data of the synthetic simulation model. The advantages of the analytics approach were maintained with a moderate variation of noisy pressure-rate signals. For production forecasting, both the trained analytics model and simulator were used to predict for an extended period, and the results indicated good agreement between the response predictions. We performed a further sensitivity analysis on important parameters such as the training scale as well as the capability of Laplacian Eigenmaps handling moderate noise in training data. The comparison between the model predictions and simulation data showed significantly increased accuracy in production estimates. The efficacy was further demonstrated from additional single-phase and multiphase synthetic and field cases. This study shows that the LEESN approach is a powerful alternative to interpret pressure-rate-time information from production data. The discussion and comparison of LEESN with other traditional production analysis and forecast methods are included as well. Deconvolved pressure-rate data greatly enhances traditional rate-transient analysis (RTA) used to characterize reservoir parameters, and the trained model enables engineers to predict future production even with noisy, highly-variable production histories. The robustness of the proposed analytics methodology is strengthened by coupling the training features with transient flow physics and provides a unique approach for production analysis and forecasting for unconventional reservoirs." @default.
- W3166105967 created "2021-06-22" @default.
- W3166105967 creator A5026370518 @default.
- W3166105967 creator A5045362263 @default.
- W3166105967 creator A5068332406 @default.
- W3166105967 creator A5088020371 @default.
- W3166105967 date "2021-12-01" @default.
- W3166105967 modified "2023-10-08" @default.
- W3166105967 title "Laplacian Echo-State Networks for production analysis and forecasting in unconventional reservoirs" @default.
- W3166105967 cites W1173632797 @default.
- W3166105967 cites W1970037416 @default.
- W3166105967 cites W1989052297 @default.
- W3166105967 cites W2001263627 @default.
- W3166105967 cites W2070188654 @default.
- W3166105967 cites W2097308346 @default.
- W3166105967 cites W2103179919 @default.
- W3166105967 cites W2118706537 @default.
- W3166105967 cites W2156886112 @default.
- W3166105967 cites W2165126036 @default.
- W3166105967 cites W2395060246 @default.
- W3166105967 cites W2528283026 @default.
- W3166105967 cites W2532358517 @default.
- W3166105967 cites W2605527675 @default.
- W3166105967 cites W2779129326 @default.
- W3166105967 cites W2782714865 @default.
- W3166105967 cites W2887843335 @default.
- W3166105967 cites W2899283552 @default.
- W3166105967 cites W2914591166 @default.
- W3166105967 cites W2962993496 @default.
- W3166105967 cites W3047479159 @default.
- W3166105967 cites W3137617355 @default.
- W3166105967 doi "https://doi.org/10.1016/j.petrol.2021.109068" @default.
- W3166105967 hasPublicationYear "2021" @default.
- W3166105967 type Work @default.
- W3166105967 sameAs 3166105967 @default.
- W3166105967 citedByCount "8" @default.
- W3166105967 countsByYear W31661059672021 @default.
- W3166105967 countsByYear W31661059672022 @default.
- W3166105967 countsByYear W31661059672023 @default.
- W3166105967 crossrefType "journal-article" @default.
- W3166105967 hasAuthorship W3166105967A5026370518 @default.
- W3166105967 hasAuthorship W3166105967A5045362263 @default.
- W3166105967 hasAuthorship W3166105967A5068332406 @default.
- W3166105967 hasAuthorship W3166105967A5088020371 @default.
- W3166105967 hasConcept C11413529 @default.
- W3166105967 hasConcept C126255220 @default.
- W3166105967 hasConcept C127413603 @default.
- W3166105967 hasConcept C14641988 @default.
- W3166105967 hasConcept C147168706 @default.
- W3166105967 hasConcept C154945302 @default.
- W3166105967 hasConcept C172025690 @default.
- W3166105967 hasConcept C174576160 @default.
- W3166105967 hasConcept C33923547 @default.
- W3166105967 hasConcept C41008148 @default.
- W3166105967 hasConcept C50644808 @default.
- W3166105967 hasConcept C78762247 @default.
- W3166105967 hasConceptScore W3166105967C11413529 @default.
- W3166105967 hasConceptScore W3166105967C126255220 @default.
- W3166105967 hasConceptScore W3166105967C127413603 @default.
- W3166105967 hasConceptScore W3166105967C14641988 @default.
- W3166105967 hasConceptScore W3166105967C147168706 @default.
- W3166105967 hasConceptScore W3166105967C154945302 @default.
- W3166105967 hasConceptScore W3166105967C172025690 @default.
- W3166105967 hasConceptScore W3166105967C174576160 @default.
- W3166105967 hasConceptScore W3166105967C33923547 @default.
- W3166105967 hasConceptScore W3166105967C41008148 @default.
- W3166105967 hasConceptScore W3166105967C50644808 @default.
- W3166105967 hasConceptScore W3166105967C78762247 @default.
- W3166105967 hasLocation W31661059671 @default.
- W3166105967 hasOpenAccess W3166105967 @default.
- W3166105967 hasPrimaryLocation W31661059671 @default.
- W3166105967 hasRelatedWork W1993928981 @default.
- W3166105967 hasRelatedWork W2020441961 @default.
- W3166105967 hasRelatedWork W2089292688 @default.
- W3166105967 hasRelatedWork W2183181906 @default.
- W3166105967 hasRelatedWork W2280335824 @default.
- W3166105967 hasRelatedWork W2386387936 @default.
- W3166105967 hasRelatedWork W2969680539 @default.
- W3166105967 hasRelatedWork W3135409736 @default.
- W3166105967 hasRelatedWork W1629725936 @default.
- W3166105967 hasRelatedWork W3137059050 @default.
- W3166105967 hasVolume "207" @default.
- W3166105967 isParatext "false" @default.
- W3166105967 isRetracted "false" @default.
- W3166105967 magId "3166105967" @default.
- W3166105967 workType "article" @default.